




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Presenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege1.UnderstandingSlopeandTaperImportDirectoryConceptofSlopeDrawingandLabelingSlope12UnderstandingSlopeandTaperConceptofTaper3DrawingandLabelingTaper4ConceptofSlopeS=tanβ=(H-h)/LUsually,theantecedentoftheratioisreducedto1,andtheslopeisexpressedintheformofasimplefraction1:n.MethodofDrawingSlope1:5BCCHENWPBCCHENWPSlopeExampleDrawingSteps①Drawtheknownstraightsectionsbasedonthegivendimensionsinthediagram.②FrompointA,constructaright-angledtriangleata1:12slope,thendeterminethehypotenuseAC.③FromthegivenpointD,drawalineparalleltoAC.④Darkenandthickenthewedgekeyoutline,thenmarktheslopesymbol.Thebottomlineoftheslopesymbolshouldbeparalleltothereferencesurface(line),andthedirectionofthesymbol'stipshouldbeconsistentwiththeinclinationdirectionoftheslope.DrawingoftheSlopeSymbol.ConceptofTaperC=(D-d)/L=2tan(α/2)Liketherepresentationofslope,theantecedentofthetaperratioisusuallyreducedto1andwrittenintheformof1:n.TaperExampleLatheCenterToolShankMethodofDrawingTaperTakehalfofthetaperintheverticaldirection1:4TaperExampleDrawthegraphicwitha1:5taperasshowninthetaperaxisDrawingSteps①Accordingtothedimensionsinthedrawing,drawtheknownstraightlinesection.②ArbitrarilydeterminethebaseABoftheisoscelestriangleas1unitlengthandtheheightas5unitlengths,anddrawtheisoscelestriangleABC.③FromtheknownpointsDandE,drawlinesparalleltoACandBCrespectively.④Darkenandthickenthegraphicandlabelthetapersymbol.SummaryConceptualDifferenceBetweenSlopeandTaperDrawingMethodsofSlopeandTaper12UnderstandingSlopeandTaperFutureCareerApplicationWhyarebulletsmadetapered?Inourfuturework,weshouldcombinepracticalworkwithmorethinkingandreflection.Onlybythinkingdiligentlycanwecontinuetoprogress.Whatisthetaperofthetoolholderinamachiningcenter?PracticeTaskPresenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege2.ArcConnectionIntroductionIntroductionContentsConceptofarcconnectionTypesofarcconnection12ArcconnectionDrawingmethodofarcconnection3ConceptofarcconnectionArcconnectionisadraftingmethodthatemploysatangentarctosmoothlyjointwoadjacentsegments(linesorarcs)withoutabrupttransitions.Essenceofarcconnection:thearcistangenttothestraightline,andthearcistangenttothearc.SmoothTypesofarcconnectionSelectanypointonL1orL2ascenterO;anarcdrawnwithradiusRwillbetangenttolineL.
ConclusionArctangenttoaknownstraightline01TypesofarcconnectionTakeanypointontheconcentriccircleasthecenterO,anddrawanarcwithradiusR.Thearcistangenttotheknownarc.KConclusionArctangenttoaknownarcexternally02TypesofarcconnectionTakeanypointontheconcentriccircleasthecenterO,anddrawanarcwithradiusR.Thearcistangenttotheknownarc.ConclusionKArctangenttoaknownarcinternally03DrawingmethodofarcconnectionKnownradiusFixedcenterFindtangentpointConnectarcDrawingmethodofarcconnectionoRRBK2K1ORRRSpecialmethodofarcconnectingtwostraightlinesatarightangleMethodofarcconnectingtwostraightlinesatanyangleArctangenttoaknownstraightline01DrawingmethodofarcconnectionRa=R1+RRb=R2+RRMethod:Thecenterliesattheintersectionofarcswithradii(R+R1)and(R+R2).Arctangenttotwoknownarcsexternally02DrawingmethodofarcconnectionRa=R-R1Rb=R-R2Method:findthecenterbythedifferenceofthetwointernaltangentradiiArctangenttotwoknownarcsinternally03DrawingmethodofarcconnectionRT1T2OR+R1R+R2R1O1O2R2RR2O2R1O1R-R1R-R2T2T1RORSummaryConceptandtypesofarcconnectionDrawingmethodofarcconnection12ArcconnectionPracticeTask主講人:趙慧、楊國星TianjinLightIndustryVocationalTechnicalCollege3.DrawingtheThree-ViewProjectionofaStraightLinePartIIn-ClassReviewPARTIIn-ClassReviewI.Three-ViewProjectionofaStraightLineDefinition:Astraightlineisdeterminedbytwopoints.Byconnectingthecorrespondingprojectionsofthesetwopointswithastraightlineineachview,weobtainthecorrespondingprojectionofthestraightline.aa
a
b
b
b●●●●●●In-ClassReviewII.ProjectionCharacteristicsofaStraightLineonaSingleProjectionPlaneAB●●●●abStraightlineperpendiculartotheprojectionplane:theprojectioncoincidesintoasinglepoint(AccumulationProperty)Straightlineparalleltotheprojectionplane:theprojectionreflectsthetruelengthofthesegmentab=AB(True-Length
Property)Straightlineinclinedtotheprojectionplane:theprojectionisshorterthanthespatialsegmentab=ABcosα(Similarity
Property).●●AB●●abαAMB●a≡b≡m●●●In-ClassReviewIII.ProjectioncharacteristicsofastraightlineinthesystemofthreeprojectionplanesProjection-plane-parallel
linesProjection-plane-perpendicular
lines
frontalline—paralleltotheV-planeprofileline—paralleltotheW-planehorizontalline—paralleltotheH-planefrontalperpendicularline—perpendiculartotheV-planeprofileperpendicularline—perpendiculartotheW-planeVerticalline—perpendiculartotheH-planeGeneral‐positionstraightlinecollectivelyreferredtoasspecial-positionlinesStraightlineinclinedtoallthreeprojectionplanesPerpendiculartooneprojectionplanewhileparalleltotheothertwoprojectionplanes.Parallel
tooneprojectionplaneandInclinedtotheothertwoprojectionplanes.PartIIProjection-planeperpendicular
linesPARTIIProjection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)1.Verticalline(⊥totheH-plane,∥totheV-plane,∥totheW-plane)b'b"a"BA0WHVXZb(a)a
b
b(a)a''b
ZXYWYHa'Projection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)2.
Frontalperpendicularline(⊥totheV-plane,∥
totheH-plane,∥
totheW-plane)a'(b')b"a"BA0WHVXZYabXZYH0abb"a"a'(b')Projection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)3.
Profileperpendicularline(⊥totheW-plane,∥totheV-plane,∥totheH-plane)a"(b")Wa'BA0HVXZb'abYWZYH0aba"(b")a'b'XYProjection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)Projectioncharacteristics:(1)Onitsperpendicularprojectionplane,
theprojectionconvergesintoapoint.(2)Theprojectionsontheothertwoplanes,
reflecttheactuallengthofthesegmentandareperpendiculartothecorrespondingprojectionaxes.a
b
a(b)a''b
ZXYWYHb'(a)'baa
b
ZXYWYHa'b'aba''(b
)ZXYWYHIdentificationmethod:"Onepoint,two
lines"–theprojectionthatisapointononeprojectionplaneindicatesitisperpendiculartothatprojectionplane.ProfileperpendicularlineFrontalperpendicularlineVerticallinePartIIIProjection-planeParallelLinesPARTIIIProjection-planeParallelLines(1)HorizontalLine(∥Hplane,∠Vplane,∠Wplane)
Projection-planeParallelLines(∥,∠,∠))truelengthba''aa
b'b''ZXYHYWβγXZYOaa
b
a
bb
ABβγγβProjection-planeParallelLines(2)FrontalParallelLine(∥Vplane,∠H
plane,∠W
plane)Projection-planeParallelLines(∥,∠,∠)truelengthαγααXb"b'ba'a"aoZHWVABXaboa'b'ZYHb"a"YWYγγααProjection-planeParallelLines(3)ProfileLine(∥W
plane,∠V
plane,∠H
plane)Projection-planeParallelLines(∥,∠,∠))truelengthXaba'b'ZYHb"a"YWob"b'ba'a"aZHWVABXYoαααβββProjection-planeParallelLinesProjection-planeParallelLines(∥,∠,∠)Projectioncharacteristics:Ontheprojectionplanetowhichthelineisparallel,itsprojectionshowsthesegment’struelengthandthetruemagnitudeoftheanglesbetweenthelineandtheothertwoprojectionplanes.
Ontheothertwoprojectionplanes,theprojectionsareparalleltotherespectiveprojectionaxes.Identificationmethod:“oneinclined,two
parallel”—theprojectionthatappearsinclinedonagivenprojectionplaneindicatesthatthelineisparalleltothatprojectionplane.b
a
aba
b
b
aa
b
ba
γAnglewiththeH-plane:α;anglewiththeV-plane:β;anglewiththeW-plane:γβγααβba
aa
b
b
HorizontallineFrontalparallellineProfileparallellinetruelengthtruelengthtruelengthProjection-planeParallelLinesProjection-planeParallelLines(∥,∠,∠)ProjectionCharacteristics:(1)Ontheprojectionplanetowhichthelineisperpendicular,projectionconvergestoapoint(i.e.,exhibitsconvergence).(2)Ontheothertwoprojectionplanes,theprojectionsrepresentthetruelengthofthelinesegmentandareperpendiculartotheirrespectiveprojectionaxes.a
b
a(b)a''b
ZXYWYHb'(a)'baa
b
ZXYWYHa'b'aba''(b
)ZXYWYHIdentificationMethod:"Onepoint,two
lines"—Theplaneonwhichtheprojectionappearsasapointindicatesthatthelineisperpendiculartothatprojectionplane.ProfileperpendicularLineFrontalperpendicularlineVerticalline?PartIVLineinGeneralPositionPARTIVLineinGeneralPositionLineinGeneralPosition(∠,∠,∠)OXZYABbb
a
b
aa
ZXa
b''aOYHYWa
bb
Allprojectionsonthethreeprincipalplanesareinclinedstraightlines,andallofthemareshorterthanthetruelength.ProjectionCharacteristics:IdentificationMethod:"TripleInclination".PartVKnowledge
ReinforcementPARTVKnowledge
ReinforcementDeterminethepositionaltypeofeachofthefollowinglines:GeneralPositionLineFrontalParallelLineVerticalLine?true
lengthb
a
aba
b
ZXYWYHYHYWXZZXYWYHa
b
a(b)a
b
a
b
abb
a
SummaryofThisLecture0102ClassificationoftheProjectionsofaStraightLineProjectionCharacteristicsofaStraightLineintheThree-PlaneProjectionSystem03HowtoDeterminetheSpatialOrientationofaStraightLineThoughtQuestionsLineACisa(n)
line.LineSBisa(n)
line.LineSAisa(n)
line.DeterminingtheRelativePositionsofEachEdgeofaTriangularPyramidtotheProjectionPlanesSpeakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege4.DrawingtheThree-ViewProjectionofaSphereSphere
k
k
kCircle’sRadius?Thecirculargeneratrixisrotatedaboutitsdiameter,whichservesastheaxisofrotation.Thethreeviewsarethreecircleswithadiameterequaltothatofthesphere,whicharetheprojectionsofthesphere’scontourlinesinthreedirections.FormationoftheSphericalSurfaceProjectionoftheSphere(ThreeViews)SelectingPointsontheSphere’sSurfaceAuxiliaryCircleMethodIntersectionLineofSphereWhenaplaneintersectsasphere,theintersectionlineisalwaysacircle.Dependingontherelativepositionbetweenthecuttingplaneandtheprojectionplane,
theprojectionoftheintersectionlinemaybeacircle,anellipse,orastraightline.IntersectionLineofSphereForthetheprojectionsoftheintersectionlinesgeneratedbyahorizontalplanecuttingthesphere:Inthetopview,theprojectionappearsasapartialcirculararc;Intheleftview,itconvergesintoastraightline.Forthetheprojectionsoftheintersectionlinesgeneratedbytwosideplanescuttingthesphere:Intheleftview,theprojectionappearsaspartialcirculararcs;Inthetopview,itconvergesintoastraightline.ExampleDeterminethetopviewandleftviewofahemisphereafterbeingcut.ExampleDeterminetheplanviewandleftviewofahemisphereafterbeingcut.Exercise:Speakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege5.DrawingtheThree-ViewProjectionofaCylinderCylinder
CommonBasicGeometricSolidsPlaneSolidsCurvedSolidsCylinderAnylineonthecylindricalsurfacethatisparalleltotheaxisiscalled
aprofileline.Acylinderisasolidboundedby
acylindricalsurfaceandtwocircularbases.AcylindricalsurfacecanberegardedasalineAA1rotatingaboutalineOO1thatisparalleltoit.ThelineAA1iscalledthegeneratrix.A1AOO1FormationoftheCylindricalSurface:CylinderStepsforDrawingtheThree-ViewProjectionofaCylinder
A1AOO1SelectingPointsontheCylindricalSurfaceA1AOO1Utilizingtheaccumulationofprojections.Giventheprojections(1′,2′,3′,4)ofpointsonthecylindricalsurface,determinetheirprojectionsintheothertwoviews.Cylinder
3
3
1′
1
4"
(2
)
2"
2
4
4
1"KnowledgeExplanationIntersectionLine:thelineformedbytheintersectionofaplanewiththesurfaceofasolid.Theplaneiscalledthecuttingplane,andtheresultingsolidisknownasasectionedsolid.
Duetothedifferentrelativepositionsbetweenthecuttingplaneandthecylinder’saxis,theintersectionlinecantakeonthreedifferentshapes:CircleEllipseRectanglePerpendicularInclinedParallelCylinderCutbyaPlaneKnowledgeExplanation(1)SpatialandProjectionAnalysisAnalyzetheshapeofthesolidofrevolutionandtherelativepositionbetweenthecuttingplaneandthesolid’saxis.Analyzetherelativepositionbetweenthecuttingplaneandtheprojectionplanes(e.g.,accumulation,similarity).Identifytheknownprojectionoftheintersectionlineandpredictitsunknownprojection.(2)DrawtheProjectionoftheIntersectionLineWhentheintersectionline’sprojectionisanon-circularcurve,followthesesteps:Smoothlyconnectallpointsandevaluatethe
visibility
oftheintersectionline.Locatethespecialpoints(pointsontheoutlineprofilelineandatextremepositions).Determinetheshapeoftheintersectionline.DeterminetheprojectioncharacteristicsoftheintersectionlineAddthegeneralpoints.(3)RefinetheOutline.StepstoDeterminetheIntersectionLine:ExampleAcylinderisobliquelycutbyaverticalplane;determineitsthree-viewprojection.Whatistheshapeofthesideprojectionoftheintersectionline?Whatistheknownprojectionoftheintersectionline?Whatistherelationshipbetweenthecuttingplaneandthecylinder’saxis?(1)Analysis:★Locatethespecialpoints.★Addthegeneralpoints.★Smoothlyconnectallpoints.(3)RefinetheOutline(2)DeterminetheIntersectionLine:●5●6●8●71●3●2●4●●1'●2'(4')●3'●1"●2"●3"●4"●5'(6')●7'(8')●5"●7"●8"●6"ResultsandtheSolidDiagram●1'●2'(4')●3'●1"●3"●4"●5'(6')●7'(8')●5"●8"●6"●5●6●8●71●3●2●4●●1●3●4●2Completethehorizontalandsideprojectionsofthecylinder’scutsection.ExerciseSpeakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege6.DrawingtheThree-ViewProjectionofaConeConceptsofaConeandItsThree-ViewProjectionO1ONotetheprojectionoftheoutlineprofilelineandtheevaluationofthesurface’svisibility.SAAconeisasolidboundedby
aconicalsurfaceandacircularbase.ConesFormationoftheConicalSurfaceTheconicalsurfaceisformedbyrotatinglineSA(thegeneratrix)aboutitsintersectinglineOO1.ApexProfileLineThree-ViewProjectionoftheConeStepsforDrawingtheThree-ViewProjectionofaConeO1OSA
s
s
sacbda
c
b
(d
)d
b
a
(
c
)SelectingPointsontheConesO1OSAGiventheProjection1、2、3,ontheconicalsurface,determineitsprojectionsintheothertwoviews.
s
s
(2
)
sacbda
c
b
(d
)d
b
a
(
c
)
1
1
1
2
2
(3)
3
3
SpecialPositionPointsSelectingPointsontheConicalSurfaceHowcanyouconstructastraightlineontheconicalsurface?Giventheprojections
1、2ofapointontheconicalsurface,determineitsprojectionsintheothertwoviews.GeneralPointsAuxiliaryProfileLineMethod:AuxiliaryCircleMethod:Drawanauxiliaryprofilelinethroughtheapex.●SM
s
●
s
●
1
(2
)s●2
1(2
)●
1
m
mPlaneCuttingaConeWhenthecuttingplaneisinclinedrelativetotheaxisθ>αEllipseCircleWhenthecuttingplaneisperpendiculartotheaxisθ=90°HyperbolaWhenthecuttingplaneisparalleltotheaxisθ=0°ParabolaWhenthecuttingplaneisparalleltooneprofilelineθ=αIsoscelestriangleWhenthecuttingplanepassesthroughtheapexWhatisthespatialshapeoftheintersectionline?Whatistheknownprojectionoftheintersectionline?Whatistherelationshipbetweenthecuttingplaneandthecone’saxis?★LocatethespecialpointsHowtolocatetheendpointsoftheotheraxisoftheellipse(i.e.,theforemostandrearmostpoints):★Addtheintermediatepoints.★Smoothlyconnectallpoints3.RefinetheOutline1.Analysis2.DeterminingtheIntersectionLine1'2'3‘(4’)5'(6')1"2"3"4"127‘(8')9‘(10')7"8"??5"6"??9"10"??78??910??43??56??AConeCutbyaVerticalPlane–CompletingtheThree-ViewProjectionPlaneCuttingaConeThree-viewprojectionandsoliddiagramofaconecutbyaverticalplane.1'2'3‘(4’)5'(6')7‘(8')9‘(10')7"8"??5"6"??9"10"??78??910??43??56??212"1"ExercisePresenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege7.DrawthethreeviewsofaregularprismCommonBasicGeometricBodiesBasicplanarsolidBasiccurvedsolidCaseIntroductionGeometricsolidPlanarsolidCurvedsolidThosewithallsurfacesbeingflatarecalledplanarsolidsThosewithcurvedsurfacesarecalledcurvedsolidsCuttingbodyofaregularhexagonalpyramidCuttingbodyofaregularquadrangularprismDrawingviewsofplanarsolidsDrawprojectionsofalledges(oredgefaces),andrepresentthemwiththicksolidlinesordashedlinesbasedontheirvisibility.Edge:Thelineofintersectionbetweenadjacentsurfacesonasolid.ProjectionofplanarsolidsandtheirintersectionlinesArightprismwithtopandbottomfacesasregularpolygonsiscalledaregularprism.Boththetopandbottomfaceslieonhorizontalplanes,withtheirhorizontalprojectionsexhibitingcongruence.Thefrontandbackfacesarefrontalplanes,andtheotherfourfacesareverticalplanes;theirhorizontalprojectionsallaccumulateintolines,coincidingwiththesidesofthehexagon.I.Prism(1)ThreeviewsofaprismStepsfordrawingthreeviewsofaprismProjectioncharacteristicsofaprism:Projectiononaplaneparalleltothecharacteristicfaceisapolygon;TheothertwoprojectionsareseveralrectanglesStepsfordrawingthreeviewsofaprism(2)TakingpointsonthesurfaceofaprismVisibilityrulesforpoints:Iftheprojectionoftheplanewherethepointislocatedisvisible,theprojectionofthepointisalsovisible;Iftheprojectionoftheplaneaccumulatesintoaline,theprojectionofthepointisalsovisible.
a
a
a
(b)
b
b
cCCC
DrawthethreeviewsofaregularprismTheintersectionlineformedonthesurfaceofasolidwhenaplanecutsthroughitiscalledtheintersectionline.Theplanethatcutsthroughthesolidiscalledthecuttingplane.Thesolidthathasbeencutbytheplaneiscalledthetruncatedsolid.Propertiesoftheintersectionline:Theintersectionlinerepresentsthesharedboundarybetweenthetruncatingplaneandthesolid'ssurface.Theintersectionlineisaclosedplanefigure.IntersectionlineofaplanesolidAplanarsolidundergoestruncation,theintersectionlineisaclosedplanepolygon.Theverticesoftheresultingpolygoncorrespondtotheintersectionpointsbetweenthecuttingplaneandtheedgesofthesolidobject.Thecuttinglineisobtainedbycomputingeithertheintersectionpointsofedgeswiththecuttingplaneortheintersectionlinesoffaceswiththecuttingplane.Eachsideofthesectionpolygonrepresentstheexactintersectionlocuswherethecuttingplaneintersectswithaspecificfaceofthethree-dimensionalsolid.Exampleanalysisa'aa"b'bb"c(c')c"d'(e')dee"d"Pv1FindtheintersectionpointsoftheedgeswithplaneP.2Connectthepoints—connectpointsonthesamesurface.Findtheintersectionlineafteraquadrangularprismiscut.Three-viewprojectionPracticeTaskCompletethetopandsideviewsofthehexagonalprismafterithasbeencut.1(3)2(4)1
(2
)2"●1"●3
(4
)主講人:趙慧、楊國星TianjinLightIndustryVocationalTechnicalCollege8.DrawingtheThree-ViewProjectionofaRegularPrismPyramid(1)TheThreeViewsofaPyramidAsolidformedbyabaseandseverallateralfaces.Thelateraledgesconvergeatasinglepointatafinitedistance—theapex.Tofacilitatetheanalysisoflinesandsurfacesintheviews,theprojectionsofeachvertexmaybelabeled.Pyramid
s
b
s
a
c
abc
a
(c
)b
s
yyStepsforDrawingtheThree-ViewProjectionofaPyramid:Giventhehorizontal
projection“a”ofpointAonthepyramid’ssurface,determineitsprojectionsontheothertwoviews.(2)SelectingPointsonthePyramid’sSurfacea(a′)(a″)PyramidSectionedTriangularPyramidThinkingFindthetopviewandtheleftviewofthequadrangularpyramidafterithasbeencut.3
2
1
(4
)1
?1?3
?2
?4
?3?2?4?主講人:趙慧、楊國星TianjinLightIndustryVocationalTechnicalCollege9.DrawaStandardIsometricDrawingPartIIntroductionPARTIIntroduction1810162582036Canyouunderstandthissetofthree-viewdrawingsandmentallyvisualizeitsthree-dimensionalshape?Introduction1810162582036StandardIsometric
DrawingAdvantagesItallowsyoutoclearlyexpressthethree-dimensionalshapeyouhaveconceptualizedbasedonthethreeviews;Itenablescomparisonwiththethree-viewdrawings,helpingyoutocorrectanyerrorsinyourconstructed3Dimage;Forslightlymorecomplexthree-viewdrawings,youcanobserve,imagine,andsketchtheisometricdrawingsimultaneously.PARTIIFormationofAxonometricProjectionPARTIIFormationofAxonometric
ProjectionVHYAnobjectprojectsontothehorizontalprojectionplane,formingthetopviewACBZXOAnobjectprojectsontothefrontalprojectionplane,formingthefrontviewFormationofAxonometricProjectionVHPYDrawingAxonometricProjectionsIntroducetheinclinedplaneaxonometricprojectionplaneACBZXOYZ1Y1X1C1B1A1ThefigureobtainedbyprojectingtheobjecttogetherwiththeCartesiancoordinatesystemontothisprojectionplaneusingparallelprojectionaxonometricprojectionThefigureobtainedwhentheprojectiondirectionisperpendiculartotheaxonometricprojectionplaneisometric
drawingSAxonometricProjectionPlaneAxonometricProjectionDirectionIsometric
DrawingO1FormationofAxonometric
ProjectionVHPYACBZXOYZ1Y1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數字化轉型下的供應鏈創新模式研究考核試卷
- 人才市場供需預測模型構建考核試卷
- 刨花板企業成本控制與質量管理考核試卷
- 乳腺導管癌超聲診斷與應用
- 基因編輯技術的前景分析
- 公司工作總結匯編14篇
- 機器人自主導航與定位的智能算法
- 氣球活動策劃方案
- 法律執法活動方案
- 民生劇場活動方案
- 微弱的光亮(2024年山東煙臺中考語文試卷記敘文閱讀試題)
- 2024高考物理一輪復習專題93機械振動和機械波練習含解析新人教版
- 廣西現代物流集團招聘筆試沖刺題2025
- 大學英語六級大綱詞匯正序版
- 《計算機圖形學》課后習題參考答案
- 初三第一學期家長會
- 2022-2023學年天津市北辰區八年級(下)期末語文試卷
- 位置隨動系統的MATLAB計算及仿真畢業設計說明書
- 辦公樓裝飾裝修工程施工組織設計方案
- 勞務合同保證金合同模板
- 湖南省長沙市2024年中考語文真題試卷(含答案)
評論
0/150
提交評論