




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高中數(shù)列性質(zhì)題目及答案
一、單項選擇題(每題2分,共10題)1.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{5}=9\),則公差\(d\)為()A.1B.2C.3D.42.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{4}=8\),則公比\(q\)為()A.2B.-2C.\(\pm2\)D.43.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(a_{1}=1\),\(S_{3}=9\),則\(a_{3}\)為()A.3B.4C.5D.64.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}a_{5}=16\),則\(a_{4}\)的值為()A.4B.-4C.\(\pm4\)D.85.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=a_{n}+3\),\(a_{1}=2\),則\(a_{5}\)為()A.14B.16C.18D.206.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{5}=10\),\(a_{4}=7\),則\(a_{n}\)的通項公式為()A.\(a_{n}=2n-1\)B.\(a_{n}=3n-2\)C.\(a_{n}=4n-3\)D.\(a_{n}=n+3\)7.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}a_{6}=16\),則\(a_{4}\)的值為()A.4B.-4C.\(\pm4\)D.88.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則\(a_{5}\)的值為()A.9B.11C.13D.159.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{3}+a_{7}=10\),則\(a_{5}\)的值為()A.5B.6C.7D.810.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(a_{3}=8\),則\(a_{2}\)的值為()A.4B.-4C.\(\pm4\)D.6二、多項選擇題(每題2分,共10題)1.等差數(shù)列\(zhòng)(\{a_{n}\}\)的性質(zhì)正確的有()A.若\(m+n=p+q\),則\(a_{m}+a_{n}=a_{p}+a_{q}\)B.\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)成等差數(shù)列C.公差\(d\gt0\)時,數(shù)列遞增D.\(a_{n}=a_{1}+(n-1)d\)2.等比數(shù)列\(zhòng)(\{a_{n}\}\)的性質(zhì)正確的有()A.若\(m+n=p+q\),則\(a_{m}a_{n}=a_{p}a_{q}\)B.\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)成等比數(shù)列(\(q\neq-1\))C.公比\(q\gt1\)時,數(shù)列遞增D.\(a_{n}=a_{1}q^{n-1}\)3.以下關(guān)于數(shù)列的說法正確的是()A.常數(shù)列既是等差數(shù)列也是等比數(shù)列B.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}=a_{m}+(n-m)d\)C.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{n}=a_{m}q^{n-m}\)D.數(shù)列的通項公式唯一4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}=5\),\(a_{7}=13\),則()A.公差\(d=2\)B.\(a_{1}=1\)C.\(a_{5}=9\)D.\(S_{5}=25\)5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=4\),\(a_{4}=16\),則()A.公比\(q=2\)B.\(a_{1}=2\)C.\(a_{3}=8\)D.\(S_{3}=14\)6.下列數(shù)列是等差數(shù)列的有()A.\(1,3,5,7,\cdots\)B.\(2,4,8,16,\cdots\)C.\(5,5,5,5,\cdots\)D.\(1,-1,1,-1,\cdots\)7.下列數(shù)列是等比數(shù)列的有()A.\(2,4,8,16,\cdots\)B.\(1,-1,1,-1,\cdots\)C.\(3,3,3,3,\cdots\)D.\(1,2,4,7,\cdots\)8.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=An^{2}+Bn\),則()A.\(a_{1}=A+B\)B.\(d=2A\)C.\(S_{2}=4A+2B\)D.\(a_{n}=2An+B-A\)9.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n}=256\),\(q=2\),則()A.\(n=9\)B.\(S_{n}=511\)C.\(a_{5}=16\)D.\(a_{3}=4\)10.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=2\),\(a_{1}=1\),則()A.\(a_{n}=2n-1\)B.\(S_{n}=n^{2}\)C.\(a_{5}=9\)D.數(shù)列是等差數(shù)列三、判斷題(每題2分,共10題)1.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\gt0\),\(d\lt0\),則數(shù)列遞減。()2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(q=-1\),則\(S_{n}=0\)(\(n\)為偶數(shù))。()3.常數(shù)列\(zhòng)(a_{n}=c\)(\(c\neq0\))既是等差數(shù)列也是等比數(shù)列。()4.等差數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式一定是關(guān)于\(n\)的一次函數(shù)。()5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\gt0\),\(q\gt1\),則數(shù)列遞增。()6.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}+n\),則\(a_{n}=2n\)。()7.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{m}\),\(a_{m+k}\),\(a_{m+2k}\)(\(k\)為常數(shù))成等差數(shù)列。()8.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{m}\),\(a_{m+k}\),\(a_{m+2k}\)(\(k\)為常數(shù))成等比數(shù)列。()9.若數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=(-1)^{n}\),則\(S_{100}=0\)。()10.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)是前\(n\)項和,若\(S_{n}=S_{m}\)(\(n\neqm\)),則\(S_{n+m}=0\)。()四、簡答題(每題5分,共4題)1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=2\),\(d=3\),求\(a_{n}\)與\(S_{n}\)。答案:\(a_{n}=a_{1}+(n-1)d=2+3(n-1)=3n-1\);\(S_{n}=na_{1}+\frac{n(n-1)}{2}d=2n+\frac{3n(n-1)}{2}=\frac{3n^{2}+n}{2}\)。2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(q=2\),求\(a_{n}\)與\(S_{n}\)。答案:\(a_{n}=a_{1}q^{n-1}=2^{n-1}\);\(S_{n}=\frac{a_{1}(1-q^{n})}{1-q}=\frac{1-2^{n}}{1-2}=2^{n}-1\)。3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-n\),求\(a_{n}\)。答案:當(dāng)\(n=1\)時,\(a_{1}=S_{1}=0\);當(dāng)\(n\geq2\)時,\(a_{n}=S_{n}-S_{n-1}=n^{2}-n-[(n-1)^{2}-(n-1)]=2n-2\),\(n=1\)時也滿足,所以\(a_{n}=2n-2\)。4.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}+a_{7}=10\),\(a_{5}=6\),求公差\(d\)。答案:因為\(a_{3}+a_{7}=2a_{5}\)(等差數(shù)列性質(zhì)),已知\(a_{3}+a_{7}=10\),\(a_{5}=6\),矛盾,本題無解。五、討論題(每題5分,共4題)1.討論等差數(shù)列和等比數(shù)列在實際生活中的應(yīng)用場景。答案:等差數(shù)列在生活中如每月固定增加的水電費、逐年等額遞增的工資等。等比數(shù)列如定期復(fù)利的存款利息、細胞分裂數(shù)量等。它們都能幫助分析有規(guī)律變化的數(shù)量關(guān)系,進行預(yù)測和決策。2.探討如何根據(jù)數(shù)列的前幾項判斷它是等差數(shù)列還是等比數(shù)列。答案:若相鄰兩項的差相等,即\(a_{n+1}-a_{n}\)為常數(shù),則是等差數(shù)列;若相鄰兩項的比相等,即\(\frac{a_{n+1}}{a_{n}}\)為常數(shù),則是等比數(shù)列。但要注意前幾項的規(guī)律不一定能代表整個數(shù)列,需進一步驗證。3.分析數(shù)列的通項公式與前\(n\)項和公式之間的聯(lián)系。答案:由通項公式\(a_{n}\)可通過\(S_{n}=a_{1}+a_{2}+\cdots+a_{n}\)求前\(n\)項和公式;已知\(S_{n}\),當(dāng)\(n=1\)時,\(a_{1}=S_{1}\),\(n\geq2\)時,\(a_{n}=S_{n}-S_{n-1}\),可求通項公式。二者相互關(guān)聯(lián),能全面描述數(shù)列性質(zhì)。4.說一說在學(xué)習(xí)數(shù)列性質(zhì)過程中遇到的困難及解決方法。答案:困難如性質(zhì)易混淆,應(yīng)用時找不到思路。解決方法是對比記憶等差數(shù)列和等比數(shù)列性質(zhì),多做不同類型練習(xí)題,總結(jié)解題規(guī)律,遇到難題分析已知條件與性質(zhì)的聯(lián)系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年高端商務(wù)區(qū)保安保潔全面承包管理合同
- 二零二五年度無人駕駛技術(shù)委托研發(fā)合同范本
- 二零二五年度珠寶首飾保管與鑒定協(xié)議
- 2025版農(nóng)業(yè)科技場鋪面租賃合作協(xié)議
- 二零二五Oracle人工智能輔助決策系統(tǒng)開發(fā)合同模板
- 二零二五版舞臺劇編劇作品改編與演出合同
- 2025版花卉市場草花苗木新品種研發(fā)推廣合同
- 2025版包工包料新型材料屋頂光伏工程合同
- 2025版茶葉茶點產(chǎn)品電商渠道承包經(jīng)營合同
- 2024年云南公務(wù)員行測真題(B類)
- 鍋爐試題及答案
- 2025年小學(xué)美術(shù)教師招聘考試必考美術(shù)學(xué)科專業(yè)知識匯編(160題)
- DB43-T 2066-2021 河湖管理范圍劃定技術(shù)規(guī)程
- 《體重管理年行動》科普指南課件
- 技術(shù)經(jīng)理人考試試題及答案
- uom無人機考試試題及答案
- 誤差檢測優(yōu)化策略-全面剖析
- 生態(tài)環(huán)保培訓(xùn)課件
- 2025年理財師資格考試參考題目試題及答案
- 柔性引進團隊協(xié)議書
- 2025-2030布比卡因產(chǎn)業(yè)發(fā)展分析及發(fā)展趨勢與投資前景預(yù)測報告
評論
0/150
提交評論