2021-2025北京高考真題數學匯編:第三道解答題(第18題)_第1頁
2021-2025北京高考真題數學匯編:第三道解答題(第18題)_第2頁
2021-2025北京高考真題數學匯編:第三道解答題(第18題)_第3頁
2021-2025北京高考真題數學匯編:第三道解答題(第18題)_第4頁
2021-2025北京高考真題數學匯編:第三道解答題(第18題)_第5頁
已閱讀5頁,還剩1頁未讀 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第1頁/共1頁2021-2025北京高考真題數學匯編第三道解答題(第18題)一、解答題1.(2025北京高考真題)某次考試中,只有一道單項選擇題考查了某個知識點,甲、乙兩校的高一年級學生都參加了這次考試.為了解學生對該知識點的掌握情況,隨機抽查了甲、乙兩校高一年級各100名學生該題的答題數據,其中甲校學生選擇正確的人數為80,乙校學生選擇正確的人數為75.假設學生之間答題相互獨立,用頻率估計概率.(1)估計甲校高一年級學生該題選擇正確的概率(2)從甲、乙兩校高一年級學生中各隨機抽取1名,設X為這2名學生中該題選擇正確的人數,估計的概率及X的數學期望;(3)假設:如果沒有掌握該知識點,學生就從題目給出的四個選項中隨機選擇一個作為答案;如果掌握該知識點,甲校學生選擇正確的概率為,乙校學生選擇正確的概率為.設甲、乙兩校高一年級學生掌握該知識點的概率估計值分別為,,判斷與的大小(結論不要求證明).2.(2024北京高考真題)某保險公司為了了解該公司某種保險產品的索賠情況,從合同險期限屆滿的保單中隨機抽取1000份,記錄并整理這些保單的索賠情況,獲得數據如下表:賠償次數01234單數假設:一份保單的保費為0.4萬元;前3次索賠時,保險公司每次賠償0.8萬元;第四次索賠時,保險公司賠償0.6萬元.假設不同保單的索賠次數相互獨立.用頻率估計概率.(1)估計一份保單索賠次數不少于2的概率;(2)一份保單的毛利潤定義為這份保單的保費與賠償總金額之差.(i)記為一份保單的毛利潤,估計的數學期望;(ⅱ)如果無索賠的保單的保費減少,有索賠的保單的保費增加,試比較這種情況下一份保單毛利潤的數學期望估計值與(i)中估計值的大小.(結論不要求證明)3.(2023北京高考真題)為研究某種農產品價格變化的規律,收集得到了該農產品連續40天的價格變化數據,如下表所示.在描述價格變化時,用“+”表示“上漲”,即當天價格比前一天價格高;用“-”表示“下跌”,即當天價格比前一天價格低;用“0”表示“不變”,即當天價格與前一天價格相同.時段價格變化第1天到第20天-++0++0+0--+-+00+第21天到第40天0++0++0+0++0-+用頻率估計概率.(1)試估計該農產品價格“上漲”的概率;(2)假設該農產品每天的價格變化是相互獨立的.在未來的日子里任取4天,試估計該農產品價格在這4天中2天“上漲”、1天“下跌”、1天“不變”的概率;(3)假設該農產品每天的價格變化只受前一天價格變化的影響.判斷第41天該農產品價格“上漲”“下跌”和“不變”的概率估計值哪個最大.(結論不要求證明)4.(2022北京高考真題)在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優秀獎.為預測獲得優秀獎的人數及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數據(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優秀獎的概率;(2)設X是甲、乙、丙在校運動會鉛球比賽中獲得優秀獎的總人數,估計X的數學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結論不要求證明)5.(2021北京高考真題)在核酸檢測中,“k合1”混采核酸檢測是指:先將k個人的樣本混合在一起進行1次檢測,如果這k個人都沒有感染新冠病毒,則檢測結果為陰性,得到每人的檢測結果都為陰性,檢測結束:如果這k個人中有人感染新冠病毒,則檢測結果為陽性,此時需對每人再進行1次檢測,得到每人的檢測結果,檢測結束.現對100人進行核酸檢測,假設其中只有2人感染新冠病毒,并假設每次檢測結果準確.(I)將這100人隨機分成10組,每組10人,且對每組都采用“10合1”混采核酸檢測.(i)如果感染新冠病毒的2人在同一組,求檢測的總次數;(ii)已知感染新冠病毒的2人分在同一組的概率為.設X是檢測的總次數,求X的分布列與數學期望E(X).(II)將這100人隨機分成20組,每組5人,且對每組都采用“5合1”混采核酸檢測.設Y是檢測的總次數,試判斷數學期望E(Y)與(I)中E(X)的大小.(結論不要求證明)

參考答案1.(1)(2),(3)【分析】(1)用頻率估計概率即可求解;(2)利用獨立事件乘法公式以及互斥事件的加法公式可求恰有1人做對的概率及的分布列,從而可求其期望;(3)根據題設可得關于的方程,求出其解后可得它們的大小關系.【詳解】(1)估計甲校高一年級學生該題選擇正確的概率.(2)設為“從甲校抽取1人做對”,則,,設為“從乙校抽取1人做對”,則,,設為“恰有1人做對”,故依題可知,可取,,,,故的分布列如下表:故.(3)設為“甲校掌握這個知識點的學生做該題”,因為甲校掌握這個知識點則有的概率做對該題目,未掌握該知識點的同學都是從四個選項里面隨機選擇一個,故,即,故,同理有,,故,故.2.(1)(2)(i)0.122萬元;(ii)這種情況下一份保單毛利潤的數學期望估計值大于(i)中估計值【分析】(1)根據題設中的數據可求賠償次數不少2的概率;(2)(ⅰ)設為賠付金額,則可取,用頻率估計概率后可求的分布列及數學期望,從而可求.(ⅱ)先算出下一期保費的變化情況,結合(1)的結果可求,從而即可比較大小得解.【詳解】(1)設為“隨機抽取一單,賠償不少于2次”,由題設中的統計數據可得.(2)(ⅰ)設為賠付金額,則可取,由題設中的統計數據可得,,,,故故(萬元).(ⅱ)由題設保費的變化為,故(萬元),從而.3.(1)(2)(3)不變【分析】(1)計算表格中的的次數,然后根據古典概型進行計算;(2)分別計算出表格中上漲,不變,下跌的概率后進行計算;(3)通過統計表格中前一次上漲,后一次發生的各種情況進行推斷第天的情況.【詳解】(1)根據表格數據可以看出,天里,有個,也就是有天是上漲的,根據古典概型的計算公式,農產品價格上漲的概率為:(2)在這天里,有天上漲,天下跌,天不變,也就是上漲,下跌,不變的概率分別是,,,于是未來任取天,天上漲,天下跌,天不變的概率是(3)由于第天處于上漲狀態,從前次的次上漲進行分析,上漲后下一次仍上漲的有次,不變的有次,下跌的有次,因此估計第次不變的概率最大.4.(1)0.4(2)(3)丙【分析】(1)

由頻率估計概率即可(2)

求解得X的分布列,即可計算出X的數學期望.(3)

計算出各自獲得最高成績的概率,再根據其各自的最高成績可判斷丙奪冠的概率估計值最大.【詳解】(1)由頻率估計概率可得甲獲得優秀的概率為0.4,乙獲得優秀的概率為0.5,丙獲得優秀的概率為0.5,故答案為0.4(2)設甲獲得優秀為事件A1,乙獲得優秀為事件A2,丙獲得優秀為事件A3,,,.∴X的分布列為X0123P∴(3)丙奪冠概率估計值最大.因為鉛球比賽無論比賽幾次就取最高成績.比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績是所有成績中最高的,比賽次數越多,對丙越有利.5.(1)①次;②分布列見解析;期望為;(2).【分析】(1)①由題設條件還原情境,即可得解;②求出X的取值情況,求出各情況下的概率,進而可得分布列,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論