




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江西省九江市柴桑區三中學中考試題猜想數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側面展開圖的圓心角是()A.90°B.120°C.150°D.180°2.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定3.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數為()A.65° B.60°C.55° D.45°4.如圖,AD為△ABC的中線,點E為AC邊的中點,連接DE,則下列結論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB5.y=(m﹣1)x|m|+3m表示一次函數,則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣16.在1、﹣1、3、﹣2這四個數中,最大的數是()A.1 B.﹣1 C.3 D.﹣27.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數字表示在該位置上的小正方體的個數,那么,這個幾何體的左視圖是()A. B. C. D.8.有一組數據:3,4,5,6,6,則這組數據的平均數、眾數、中位數分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,69.函數y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣210.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發,走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米11.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.12.不等式組的解集表示在數軸上正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若代數式的值為零,則x=_____.14.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.15.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=.16.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.17.不等式組的解集為,則的取值范圍為_____.18.如圖,點A1,B1,C1,D1,E1,F1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,FA1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“春節”是我國的傳統佳節,民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民人數是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數;(4)若居民區有8000人,請估計愛吃D湯圓的人數.20.(6分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.21.(6分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.22.(8分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統計整理并繪制了如下兩幅尚不完整的統計圖.請根據以上信息解答下列問題:課外體育鍛煉情況扇形統計圖中,“經常參加”所對應的圓心角的度數為______;請補全條形統計圖;該校共有1200名男生,請估計全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數;小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數約為1200×=108”,請你判斷這種說法是否正確,并說明理由.23.(8分)如圖,BD是△ABC的角平分線,點E,F分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.24.(10分)已知:如圖,在梯形ABCD中,AD∥BC,AB=DC,E是對角線AC上一點,且AC·CE=AD·BC.(1)求證:∠DCA=∠EBC;(2)延長BE交AD于F,求證:AB2=AF·AD.25.(10分)解下列不等式組:26.(12分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經過的路徑弧EQ的長(結果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.27.(12分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:設正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設正圓錐的側面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.2、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.3、A【解析】
根據線段垂直平分線的性質得到AD=DC,根據等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據三角形的內角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內角和,正確掌握線段垂直平分線的性質是解題關鍵.4、A【解析】
根據三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點E為AC邊的中點,
∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.5、B【解析】由一次函數的定義知,|m|=1且m-1≠0,所以m=-1,故選B.6、C【解析】
有理數大小比較的法則:①正數都大于0;②負數都小于0;③正數大于一切負數;④兩個負數,絕對值大的其值反而小,據此判斷即可.【詳解】解:根據有理數比較大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2這四個數中,最大的數是1.故選C.【點睛】此題主要考查了有理數大小比較的方法,要熟練掌握,解答此題的關鍵是要明確:①正數都大于0;②負數都小于0;③正數大于一切負數;④兩個負數,絕對值大的其值反而小.7、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.8、C【解析】
解:在這一組數據中6是出現次數最多的,故眾數是6;而將這組數據從小到大的順序排列3,4,5,6,6,處于中間位置的數是5,平均數是:(3+4+5+6+6)÷5=4.8,故選C.【點睛】本題考查眾數;算術平均數;中位數.9、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.10、D【解析】
根據圖中信息以及路程、速度、時間之間的關系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【點睛】本題考查一次函數的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.11、C【解析】
設I的邊長為x,根據“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據題意列出方程是解題的關鍵.12、C【解析】
根據題意先解出的解集是,把此解集表示在數軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】由題意得,=0,解得:x=3,經檢驗的x=3是原方程的根.14、3<d<7【解析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.15、【解析】
M、N兩點關于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數的定義.16、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.17、k≥1【解析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案為k≥1.18、.【解析】
設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,FM=5a,在Rt△A1FM中,FA1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F1L=a,根據對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數解決問題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)600;(2)120人,20%;30%;(3)108°(4)愛吃D湯圓的人數約為3200人【解析】試題分析:(1)由兩幅統計圖中的信息可知,喜歡B類的有60人,占被調查人數的10%,由此即可計算出被調查的總人數為60÷10%=600(人);(2)由(1)中所得被調查總人數為600人結合統計圖中已有的數據可得喜歡C類的人數為:600-180-60-240=120(人),喜歡C類的占總人數的百分比為:120÷600×100%=20%,喜歡A類的占總人數的百分比為:180÷600×100%=30%,由此即可將統計圖補充完整;(3)由(2)中所得數據可得扇形統計圖中A類所對應的圓心角度數為:360°×30%=108°;(4)由扇形統計圖中的信息:喜歡D類的占總人數的40%可得:8000×40%=3200(人);試題解析:(1)本次參加抽樣調查的居民的人數是:60÷10%=600(人);故答案為600;(2)由題意得:C的人數為600﹣(180+60+240)=600﹣480=120(人),C的百分比為120÷600×100%=20%;A的百分比為180÷600×100%=30%;將兩幅統計圖補充完整如下所示:(3)根據題意得:360°×30%=108°,∴圖②中表示“A”的圓心角的度數108°;(4)8000×40%=3200(人),即愛吃D湯圓的人數約為3200人.20、(1)-1;(2).【解析】
(1)根據零指數冪的意義、特殊角的銳角三角函數以及負整數指數冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.21、(3)證明見解析;(3)AB=3.【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點睛】本題考查了全等三角形的判定與性質,也考查了等腰直角三角形的性質和勾股定理的應用.考點:3.全等三角形的判定與性質;3.等腰直角三角形.22、(1)144°;(2)補圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解析】
試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經常參加”的人數為:300×40%=120人,喜歡籃球的學生人數為:120﹣27﹣33﹣20=120﹣80=40人;補全統計圖如圖所示;(3)全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經常參加課外體育鍛煉的男生中最喜歡的項目是乒乓球的人數,而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應多于108人.考點:①條形統計圖;②扇形統計圖.23、(1)證明見解析;(2).【解析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點E作EH⊥BD于點H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點E作EH⊥BD于點H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點睛】此題考查了平行四邊形的判定與性質、等腰三角形的判定與性質以及三角函數等知識.注意掌握輔助線的作法.24、(1)見解析;(2)見解析.【解析】
(1)由AD∥BC得∠DAC=∠BCA,又∵AC·CE=AD·BC∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)由題中條件易證得△ABF∽△DAC∴,又∵AB=DC,∴【詳解】證明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC,∴∠BAD=∠ADC,∴△ABF∽△DAC,∴,∵AB=DC,∴.【點睛】本題重點考查了平行線的性質和三角形相似的判定,靈活運用所學知識是解題的關鍵.25、﹣2≤x<.【解析】
先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).26、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據題意易證Rt△ABM≌Rt△DCN,再根據全等三角形的性質可得出對應邊相等,根據勾股定理可求出AM的值,即可得出結論;(2)連接AC,根據勾股定理求出AC的長,再根據弧長計算公式即可得出結論;(3)當點Q落在直線AB上時,根據相似三角形的性質可得對應邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設PB=x,則AP=13﹣x,再根據全等三角形的性質可得對應邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司珠寶營銷策劃方案
- 國際經濟與貿易課程考試卷及答案2025年
- 法醫職稱考試的主要試題及答案
- 2025年薪酬與福利管理師考試試卷及答案
- 2025年醫師資格考試試題及答案
- 2025年醫療費用控制人員職稱考試試卷及答案
- 2025年文化產業管理師考試卷及答案
- 2025年文化產業管理專業復習考試試卷及答案
- 2025年社會工作者職業資格考試試題及答案
- 2025年社會文化研究生入學考試試卷及答案
- 2025年蘇教版科學六年級下冊小升初期末檢測題附答案
- 電力安全事故隱患排查
- 【MOOC】人工智能基礎-科技大學 中國大學慕課MOOC答案
- 滁州康華電子材料有限公司(5G 基站)集成線路板相關材料項目環境影響報告書
- 2023年陜西韓城象山中學高一物理第二學期期末聯考試題(含答案解析)
- DB4401-T 102.1-2020 建設用地土壤污染防治+第1部分:污染狀況調查技術規范-(高清現行)
- 農業產業園可行性研究報告
- 實驗2:基本數據類型、運算符與表達式
- 常州建筑水電安裝施工專項方案
- 增強教師職業認同感、榮譽感、幸福感-課件
- Q∕GDW 12130-2021 敏感用戶接入電網電能質量技術規范
評論
0/150
提交評論