2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷含解析_第1頁
2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷含解析_第2頁
2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷含解析_第3頁
2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷含解析_第4頁
2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜西省西安市經開第一校中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數y=的圖象恰好經過點A′、B,則k的值是()A.9 B. C. D.32.下列各組數中,互為相反數的是()A.﹣2與2 B.2與2 C.3與 D.3與33.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m4.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg5.運用乘法公式計算(3﹣a)(a+3)的結果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+96.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<17.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm8.在學校演講比賽中,10名選手的成績折線統計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.59.甲、乙、丙三家超市為了促銷同一種定價為m元的商品,甲超市連續兩次降價20%;乙超市一次性降價40%;丙超市第一次降價30%,第二次降價10%,此時顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣10.如圖,已知二次函數y=ax2+bx的圖象與正比例函數y=kx的圖象相交于點A(1,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④二、填空題(共7小題,每小題3分,滿分21分)11.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.12.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點至多拐一次彎的路徑長稱為P,Q的“實際距離”如圖,若,,則P,Q的“實際距離”為5,即或環保低碳的共享單車,正式成為市民出行喜歡的交通工具設A,B兩個小區的坐標分別為,,若點表示單車停放點,且滿足M到A,B的“實際距離”相等,則______.13.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根,則m的取值范圍是_____.14.已知整數k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.15.計算:()﹣1﹣(5﹣π)0=_____.16.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.17.在Rt△ABC紙片上剪出7個如圖所示的正方形,點E,F落在AB邊上,每個正方形的邊長為1,則Rt△ABC的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發現該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數為_______人,扇形統計圖中D類所對應扇形的圓心角為_____度,請補全條形統計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.19.(5分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.20.(8分)如圖,在每個小正方形的邊長為1的網格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).21.(10分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.22.(10分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經過B、M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.23.(12分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數量不少于B型文具數量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?24.(14分)如圖是根據對某區初中三個年級學生課外閱讀的“漫畫叢書”、“科普常識”、“名人傳記”、“其它”中,最喜歡閱讀的一種讀物進行隨機抽樣調查,并繪制了下面不完整的條形統計圖和扇形統計圖(每人必選一種讀物,并且只能選一種),根據提供的信息,解答下列問題:(1)求該區抽樣調查人數;(2)補全條形統計圖,并求出最喜歡“其它”讀物的人數在扇形統計圖中所占的圓心角度數;(3)若該區有初中生14400人,估計該區有初中生最喜歡讀“名人傳記”的學生是多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據相似三角形或銳角三角函數可求得A′(,),根據反比例函數性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.2、A【解析】

根據只有符號不同的兩數互為相反數,可直接判斷.【詳解】-2與2互為相反數,故正確;2與2相等,符號相同,故不是相反數;3與互為倒數,故不正確;3與3相同,故不是相反數.故選:A.【點睛】此題主要考查了相反數,關鍵是觀察特點是否只有符號不同,比較簡單.3、B【解析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.4、D【解析】試題分析:科學計數法是指:a×,且,n為原數的整數位數減一.5、C【解析】

根據平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關鍵是應用平方差公式計算時,應注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數;②右邊是相同項的平方減去相反項的平方.6、C【解析】

將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.7、C【解析】

由∥可得△ADE∽△ABC,再根據相似三角形的性質即可求得結果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點:相似三角形的判定和性質點評:解答本題的關鍵是熟練掌握相似三角形的對應邊成比例,注意對應字母在對應位置上.8、C【解析】試題分析:根據折線統計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.9、B【解析】

根據各超市降價的百分比分別計算出此商品降價后的價格,再進行比較即可得出結論.【詳解】解:降價后三家超市的售價是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時顧客要購買這種商品最劃算應到的超市是乙.故選:B.【點睛】此題考查了列代數式,解題的關鍵是根據題目中的數量關系列出代數式,并對代數式比較大小.10、B【解析】

根據拋物線圖象性質確定a、b符號,把點A代入y=ax2+bx得到a與b數量關系,代入②,不等式kx≤ax2+bx的解集可以轉化為函數圖象的高低關系.【詳解】解:根據圖象拋物線開口向上,對稱軸在y軸右側,則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數的圖像,sinα公式,不等式的解集.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.12、1.【解析】

根據兩點間的距離公式可求m的值.【詳解】依題意有,解得,故答案為:1.【點睛】考查了坐標確定位置,正確理解實際距離的定義是解題關鍵.13、m≤1【解析】

根據一元二次方程有實數根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數根;△=0,方程有兩個相等的實數根;△<0,方程沒有實數根是本題的關鍵.14、6或12或1.【解析】

根據題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!15、1【解析】

分別根據負整數指數冪,0指數冪的化簡計算出各數,即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點睛】此題考查負整數指數冪,0指數冪的化簡,難度不大16、2【解析】

連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關于半徑的方程,求得圓半徑即可【詳解】設AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關鍵是利用勾股定理求關于半徑的方程.17、【解析】

如圖,設AH=x,GB=y,利用平行線分線段成比例定理,構建方程組求出x,y即可解決問題.【詳解】解:如圖,設AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案為.【點睛】本題考查圖形的相似,平行線分線段成比例定理,解題的關鍵是學會利用參數構建方程組解決問題,屬于中考常考題型.三、解答題(共7小題,滿分69分)18、48;105°;2【解析】試題分析:根據B的人數和百分比求出總人數,根據D的人數和總人數的得出D所占的百分比,然后得出圓心角的度數,根據總人數求出C的人數,然后補全統計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據題意畫出表格,根據概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點:統計圖、概率的計算.19、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數的綜合應用,熟練掌握二次函數的性質是解題的關鍵.20、作a∥b∥c∥d,可得交點P與P′【解析】

(1)根據勾股定理計算即可;(2)利用平行線等分線段定理即可解決問題.【詳解】(I)AC==,故答案為:;(II)如圖直線l1,直線l2即為所求;

理由:∵a∥b∥c∥d,且a與b,b與c,c與d之間的距離相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案為作a∥b∥c∥d,可得交點P與P′.【點睛】本題考查作圖-應用與設計,勾股定理,平行線等分線段定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.21、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】

(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.22、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】

(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據相似三角形的性質即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論