江蘇省宿遷市2023-2024學年學業水平考試數學試題模擬卷(四)_第1頁
江蘇省宿遷市2023-2024學年學業水平考試數學試題模擬卷(四)_第2頁
江蘇省宿遷市2023-2024學年學業水平考試數學試題模擬卷(四)_第3頁
江蘇省宿遷市2023-2024學年學業水平考試數學試題模擬卷(四)_第4頁
江蘇省宿遷市2023-2024學年學業水平考試數學試題模擬卷(四)_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省宿遷市2022-2023學年學業水平考試數學試題模擬卷(四)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立2.在中,分別為所對的邊,若函數有極值點,則的范圍是()A. B.C. D.3.歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是A. B. C. D.4.已知向量,,則向量與的夾角為()A. B. C. D.5.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.6.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個7.已知復數滿足,(為虛數單位),則()A. B. C. D.38.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.9.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或10.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產生1到4之間(含1和4)取整數值的隨機數,分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下20組隨機數:141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.11.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.12.函數的值域為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為銳角,若,則的值為____________.14.若滿足約束條件,則的最大值為__________.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.16.已知等差數列的前n項和為Sn,若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.18.(12分)“綠水青山就是金山銀山”,為推廣生態環境保護意識,高二一班組織了環境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現要從這人的兩個興趣小組中抽出人參加學校的環保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發生的概率;(2)用表示抽取的人中乙組女生的人數,求隨機變量的分布列和期望19.(12分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.20.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰,建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉鎮開展扶貧工作.對某種農產品加工生產銷售進行指導,經調查知,在一個銷售季度內,每售出一噸該產品獲利5萬元,未售出的商品,每噸虧損2萬元.經統計,兩市場以往100個銷售周期該產品的市場需求量的頻數分布如下表:市場:需求量(噸)90100110頻數205030市場:需求量(噸)90100110頻數106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產噸該產品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據,確定下個銷售周期內生產量噸還是噸?并說明理由.21.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.22.(10分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網.現恰有三個團購網站在市開展了團購業務,市某調查公司為調查這三家團購網站在本市的開展情況,從本市已加入了團購網站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網站的情況如下圖所示.(1)從所調查的50家商家中任選兩家,求他們加入團購網站的數量不相等的概率;(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網站數量之差的絕對值,求隨機變量的分布列和數學期望;(3)將頻率視為概率,現從市隨機抽取3家已加入團購網站的商家,記其中恰好加入了兩個團購網站的商家數為,試求事件“”的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.2.D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數的極值.【方法點晴】本題考查余弦定理,函數的極值,涉及函數與方程思想思想、數形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.3.B【解析】

初始:,,第一次循環:,,繼續循環;第二次循環:,,此時,滿足條件,結束循環,所以判斷框內填入的條件可以是,所以正整數的最小值是3,故選B.4.C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數量積的坐標表示.求向量夾角時,通常代入公式進行計算.5.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.6.D【解析】

運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.7.A【解析】,故,故選A.8.D【解析】

選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.9.C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.10.A【解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數比20即可得解.【詳解】由題意可知當1,2同時出現時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數的應用和古典概型概率的計算,屬于基礎題.11.B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.12.A【解析】

由計算出的取值范圍,利用正弦函數的基本性質可求得函數的值域.【詳解】,,,因此,函數的值域為.故選:A.【點睛】本題考查正弦型函數在區間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

∵為銳角,,∴,∴,,故.14.4【解析】

作出可行域如圖所示:由,解得.目標函數,即為,平移斜率為-1的直線,經過點時,.15.【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率16.【解析】

由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.18.(Ⅰ);(Ⅱ)分布列見解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.19.(1)或;(2)證明見解析,定點【解析】

(1)設,由題意可知,對的正負分情況討論,從而求得動點的軌跡的方程;(2)設其方程為,與拋物線方程聯立,利用韋達定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點.【詳解】(1)設,動點到定點的距離比到軸的距離多,,時,解得,時,解得.動點的軌跡的方程為或(2)證明:如圖,設,,由題意得(否則)且,所以直線的斜率存在,設其方程為,將與聯立消去,得,由韋達定理知,,①顯然,,,,將①式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點.【點睛】本題主要考查了動點軌跡,考查了直線與拋物線的綜合,是中檔題.20.(1);(2)噸,理由見解析【解析】

(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論