




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年天津市河西區環湖中學中考猜題數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b2.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.3.下列各式中,不是多項式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)4.下列計算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x45.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a76.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.7.用加減法解方程組時,若要求消去,則應()A. B. C. D.8.2018年,我國將加大精準扶貧力度,今年再減少農村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數據280萬用科學計數法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1079.某區10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數的平均數和眾數分別是()人數3421分數80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和8010.﹣2018的相反數是()A.﹣2018 B.2018 C.±2018 D.﹣11.若正比例函數y=kx的圖象上一點(除原點外)到x軸的距離與到y軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.312.已知二次函數(m為常數)的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:______.14.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數y1和過P,A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數的最大值之和等于__.15.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元16.若使代數式有意義,則x的取值范圍是_____.17.計算(+)(-)的結果等于________.18.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰失敗,則該項成績為0,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點,在上,直線是的切線,.連接交于.(1)求證:(2)若,的半徑為,求的長.20.(6分)在矩形紙片ABCD中,AB=6,BC=8,現將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.21.(6分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當α=45°時,問老人能否還曬到太陽?請說明理由.22.(8分)如圖①,二次函數的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.23.(8分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.24.(10分)某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.(1)根據圖象求出b關于a的函數解析式(包括自變量的取值范圍);(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數解析式(m為常數),并向農場建議總費用最低的購買方案.25.(10分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條弧.(1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).26.(12分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數.27.(12分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數據即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關系是解答本題的關鍵.2、D【解析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.3、D【解析】
原式分解因式,判斷即可.【詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【點睛】考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.4、D【解析】
先利用合并同類項法則,單項式除以單項式,以及單項式乘以單項式法則計算即可得到結果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.【點睛】本題主要考查了合并同類項法則,單項式除以單項式,單項式乘以單項式法則,正確掌握運算法則是解題關鍵.5、D【解析】
分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.6、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.7、C【解析】
利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,
故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.8、B【解析】分析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:280萬這個數用科學記數法可以表示為故選B.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.9、B【解析】
根據眾數及平均數的定義,即可得出答案.【詳解】解:這組數據中85出現的次數最多,故眾數是85;平均數=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點睛】本題考查了眾數及平均數的知識,掌握各部分的概念是解題關鍵.10、B【解析】分析:只有符號不同的兩個數叫做互為相反數.詳解:-1的相反數是1.故選:B.點睛:本題主要考查的是相反數的定義,掌握相反數的定義是解題的關鍵.11、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數圖象上的點的坐標特征可得出k=±1,再利用正比例函數的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數圖象上點的坐標特征以及正比例函數的性質,利用一次函數圖象上點的坐標特征,找出k=±1是解題的關鍵.12、B【解析】試題分析:∵二次函數(m為常數)的圖象與x軸的一個交點為(1,0),∴.∴.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】原式==.故答案為:.14、2【解析】
連接PB、PC,根據二次函數的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據等邊三角形的性質求解即可.【詳解】解:如圖,連接PB、PC,由二次函數的性質,OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數的最值問題,等邊三角形的判定與性質,解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.15、300【解析】
設成本為x元,標價為y元,根據已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據題意列出方程再求解.16、x≠﹣2【解析】
直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關鍵是熟練的掌握分式有意義的條件.17、2【解析】
利用平方差公式進行計算即可得.【詳解】原式==5-3=2,故答案為:2.【點睛】本題考查了二次根式的混合運算,掌握平方差公式結構特征是解本題的關鍵.18、乙乙的比賽成績比較穩定.【解析】
觀察表格中的數據可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定,據此可得結論.【詳解】觀察表格中的數據可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩定.故答案為乙,乙的比賽成績比較穩定.【點睛】本題主要考查了方差,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解析】
(1)連結OA,由AC為圓的切線,利用切線的性質得到∠OAC為直角,再由,得到∠BOC為直角,由OA=OB得到,再利用對頂角相等及等角的余角相等得到,利用等角對等邊即可得證;(2)在中,利用勾股定理即可求出OC,由OC=OD+DC,DC=AC,即可求得OD的長.【詳解】(1)如圖,連接,∵切于,∴,∴又∵,∴在中:∵,∴,∴,又∵,∴,∴;(2)∵在中:,,由勾股定理得:,由(1)得:,∴.【點睛】此題考查了切線的性質、勾股定理、等腰三角形的判定與性質,熟練掌握切線的性質是解本題的關鍵.20、(1)見解析;(2).【解析】
(1)根據折疊得出∠DEF=∠BEF,根據矩形的性質得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據矩形的性質得出EM=AB=6,AE=BM,根據折疊得出DE=BE,根據勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【點睛】本題考查了折疊的性質和矩形性質、勾股定理等知識點,能熟記折疊的性質是解答此題的關鍵.21、(1)樓房的高度約為17.3米;(2)當α=45°時,老人仍可以曬到太陽.理由見解析.【解析】試題分析:(1)在Rt△ABE中,根據的正切值即可求得樓高;(2)當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大樓的影子落在臺階MC這個側面上.即小貓仍可曬到太陽.試題解析:解:(1)當當時,在Rt△ABE中,∵,∴BA=10tan60°=米.即樓房的高度約為17.3米.當時,小貓仍可曬到太陽.理由如下:假設沒有臺階,當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.∵∠BFA=45°,∴,此時的影長AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大樓的影子落在臺階MC這個側面上.∴小貓仍可曬到太陽.考點:解直角三角形.22、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數解析式為:,得:k2解得:k2過A、C兩點的一次函數解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標為(-4,0)12分【解析】(1)直接利用三點式求出二次函數的解析式;(2)若四邊形DFHG的周長最小,應將邊長進行轉換,利用對稱性,要使四邊形DFHG的周長最小,由于DF是一個定值,只要使DG+GH+HI最小即可,由圖形的對稱性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小,即|EI|=(-2-0即邊形DFHG的周長最小為2+25(3)要使△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論,①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.即求出以P、C、M為頂點的三角形與△AOM相似的P的坐標(-4,0)23、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質以及相似三角形的性質的運用,解題時注意:對角線相等的平行四邊形是矩形.24、(1)b=;(2)詳見解析.【解析】
(1)分別設兩段函數圖象的解析式,代入圖象上點的坐標求解即可;(2)先求出農場從A、B公司購買銨肥的費用,再求出農場從A、B公司購買銨肥的運輸費用,兩者之和即為總費用,可以求出總費用關于x的解析式是一次函數,根據m的取值范圍不同分兩類討論,可得出結論.【詳解】(1)有圖象可得,函數圖象分為兩部分,設第一段函數圖象為y=k1x,代入點(4,12),即12=k1×4,可得k1=3,設第二段函數圖象為y=k2x+c,代入點(4,12)、(8,32)可列出二元一次方程組,解得:k2=5,c=-8,所以函數解析式為:b=;(2)農場從A公司購買銨肥的費用為750x元,因為B公司有銨肥7噸,1≤x≤3,故農場從B公司購買銨肥的重量(8-x)肯定大于5噸,農場從B公司購買銨肥的費用為700(8-x)元,所以購買銨肥的總費用=750x+700(8-x)=50x+5600(0≤x≤3);農場從A公司購買銨肥的運輸費用為3xm元,且滿足1≤x≤3,農場從B公司購買銨肥的運輸費用為[5(8-x)-8]×2m元,所以購買銨肥的總運輸費用為3xm+[5(8-x)-8]×2m=-7mx+64m元,因此農場購買銨肥的總費用y=50x+5600-7mx+64m=(50-7m)x+5600+64m(1≤x≤3),分一下兩種情況進行討論;①當50-7m≥0即m≤時,y隨x的增加而增加,則x=1使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買1噸,從B公司購買7噸,②當50-7m<0即m>時,y隨x的增加而減少,則x=3使得y取得最小值即總費用最低,此時農場銨肥的購買方案為:從A公司購買3噸,從B公司購買5噸.【點睛】本題主要考查了方案比較以及函數解析式的求解,解本題的要點在于根據題意列出相關方程式.25、(1)π,2π;(2)(n﹣2)π.【解析】
(1)利用弧長公式和三角形和四邊形的內角和公式代入計算;(2)利用多邊形的內角和公式和弧長公式計算.【詳解】(1)利用弧長公式可得=π,因為n1+n2+n3=180°.同理,四邊形的==2π,因為四邊形的內角和為360度;(2)n條弧==(n﹣2)π.【點睛】本題考查了多邊形的內角和定理以及扇形的面積公式和弧長的計算公式,理解公式是關鍵.26、(1);(2)30°【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年度行業銷售增長數據表
- 食品加工工藝及技術案例分析題
- 醫學遺傳學遺傳病知識點梳理
- 農業園區建設合作協議書
- 物聯網技術在農業生產中的應用與創新
- 農業循環經濟在綠色低碳轉型中的應用
- 個體知識在學科實踐中的作用機制與教學策略
- 2025年衛星通信相關知識考試試題及答案
- 2025年市場調查與分析考試題及答案
- 2025年體育運動科學與人類健康考試試題及答案
- 2025年江西省中考學業水平考試考前預測數學試卷(含答案)
- 2025春季學期國開電大專科《管理學基礎》一平臺在線形考(形考任務一至四)試題及答案
- 馬克思主義基本原理試卷2(附答案)
- 2024小學體育教師進城考試模擬試卷及參考答案
- 瘢痕疙瘩術后護理
- 2024-2025學年部編版一年級下學期期末語文試卷(含答案)
- 惠然科技有限公司半導體量測設備總部項目環評資料環境影響
- 2025年河北省青縣事業單位公開招聘衛生崗考前沖刺題帶答案
- 北京市東城區2023-2024學年五年級下學期語文期末試卷(含答案)
- GB/T 37507-2025項目、項目群和項目組合管理項目管理指南
- 直播帶貨主播培訓課程大綱
評論
0/150
提交評論