2024屆黑龍江省哈爾濱市中考數學押題卷含解析_第1頁
2024屆黑龍江省哈爾濱市中考數學押題卷含解析_第2頁
2024屆黑龍江省哈爾濱市中考數學押題卷含解析_第3頁
2024屆黑龍江省哈爾濱市中考數學押題卷含解析_第4頁
2024屆黑龍江省哈爾濱市中考數學押題卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省哈爾濱市中考數學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.2.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是A. B. C. D.3.如圖,二次函數y=ax2+bx+c(a≠0)的圖象經過點A,B,C.現有下面四個推斷:①拋物線開口向下;②當x=-2時,y取最大值;③當m<4時,關于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數根;④直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④4.如圖所示,是用直尺和圓規作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據是()A.SAS B.SSS C.AAS D.ASA5.安徽省2010年末森林面積為3804.2千公頃,用科學記數法表示3804.2千正確的是()A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1056.下列二次函數的圖象,不能通過函數y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x27.如圖,△ABC是⊙O的內接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°8.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.29.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體10.下列命題是真命題的個數有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個11.化簡的結果為()A.﹣1 B.1 C. D.12.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.有一組數據:3,a,4,6,7,它們的平均數是5,則a=_____,這組數據的方差是_____.14.若分式的值為正,則實數的取值范圍是__________________.15.因式分解:a2b-4ab+4b=______.16.若點A(1,m)在反比例函數y=的圖象上,則m的值為________.17.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.18.如圖,在邊長為1的正方形格點圖中,B、D、E為格點,則∠BAC的正切值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中m=2.20.(6分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.21.(6分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.22.(8分)如圖,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.在圖中畫出以線段AB為一邊的矩形ABCD(不是正方形),且點C和點D均在小正方形的頂點上;在圖中畫出以線段AB為一腰,底邊長為2的等腰三角形ABE,點E在小正方形的頂點上,連接CE,請直接寫出線段CE的長.23.(8分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.24.(10分)如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.求證:MD=MC;若⊙O的半徑為5,AC=4,求MC的長.25.(10分)如圖,已知反比例函數y=(x>0)的圖象與一次函數y=﹣x+4的圖象交于A和B(6,n)兩點.求k和n的值;若點C(x,y)也在反比例函數y=(x>0)的圖象上,求當2≤x≤6時,函數值y的取值范圍.26.(12分)如圖,一次函數y=kx+b與反比例函數y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數與反比例函數的解析式;根據所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.27.(12分)解不等式組.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據平行四邊形的性質和圓周角定理可得出答案.【詳解】根據平行四邊形的性質可知∠B=∠AOC,根據圓內接四邊形的對角互補可知∠B+∠D=180°,根據圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.2、A【解析】

根據一元二次方程的根的判別式,建立關于m的不等式,求出m的取值范圍即可.【詳解】∵關于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關鍵在于熟練掌握一元二次方程根的情況與判別式△的關系,即:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.3、B【解析】

結合函數圖象,利用二次函數的對稱性,恰當使用排除法,以及根據函數圖象與不等式的關系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標應該相等,但是圖中點A和點B的縱坐標顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經過點A,C,當kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數的圖象,二次函數的對稱性,以及二次函數與一元二次方程,二次函數與不等式的關系,屬于較復雜的二次函數綜合選擇題.4、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.5、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.【詳解】∵3804.2千=3804200,∴3804200=3.8042×106;故選:C.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、D【解析】分析:根據平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y=2x2,故本選項正確.故選D.7、A【解析】

根據等腰三角形的性質以及三角形內角和定理可得∠A=50°,再根據平行線的性質可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據三角形內角和定理即可求得∠DBC的度數.【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點睛】本題考查了等腰三角形的性質,圓周角定理,三角形內角和定理等,熟練掌握相關內容是解題的關鍵.8、C【解析】

根據左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.9、D【解析】

本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.10、C【解析】

根據菱形的性質、垂徑定理、反比例函數和一次函數進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.【點睛】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.11、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.12、D【解析】

先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、51.【解析】∵一組數據:3,a,4,6,7,它們的平均數是5,∴,解得,,∴=1.故答案為5,1.14、x>0【解析】【分析】分式值為正,則分子與分母同號,據此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.15、【解析】

先提公因式b,然后再運用完全平方公式進行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結構特征是解本題的關鍵.16、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.17、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.18、【解析】

根據圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網格格點上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點睛】本題考查的知識點是圓周角定理及其推論及解直角三角形,解題的關鍵是熟練的掌握圓周角定理及其推論及解直角三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、,原式.【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,約分得到最簡結果,把m的值代入計算即可求出值.【詳解】原式,當m=2時,原式.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.20、證明見解析【解析】試題分析:由AB=AD,CB=CD結合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.21、解:(1)圖見解析;(2)證明見解析.【解析】

(1)根據角平分線的作法作出∠ABC的平分線即可.(2)首先根據角平分線的性質以及平行線的性質得出∠ABE=∠AEB,進而得出△ABO≌△FBO,進而利用AF⊥BE,BO=EO,AO=FO,得出即可.【詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.22、作圖見解析;CE=4.【解析】分析:利用數形結合的思想解決問題即可.詳解:如圖所示,矩形ABCD和△ABE即為所求;CE=4.點睛:本題考查作圖-應用與設計、等腰三角形的性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會利用思想結合的思想解決問題.23、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.24、(1)證明見解析;(2)MC=.【解析】【分析】(1)連接OC,利用切線的性質證明即可;(2)根據相似三角形的判定和性質以及勾股定理解答即可.【詳解】(1)連接OC,∵CN為⊙O的切線,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由題意可知AB=5×2=10,AC=4,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【點睛】本題考查了切線的判定和性質、相似三角形的判定和性質、勾股定理等知識,準確添加輔助線,正確尋找相似三角形是解決問題的關鍵.25、(1)n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論