泉州幼兒師范高等專科學校《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷_第1頁
泉州幼兒師范高等專科學校《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷_第2頁
泉州幼兒師范高等專科學校《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷_第3頁
泉州幼兒師范高等專科學校《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷_第4頁
泉州幼兒師范高等專科學校《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁泉州幼兒師范高等專科學校

《神經(jīng)網(wǎng)絡計算機視覺》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在交通領域的應用包括智能交通管理、自動駕駛等。假設一個城市要實施智能交通系統(tǒng)。以下關(guān)于人工智能在交通中的應用描述,哪一項是錯誤的?()A.通過分析交通流量數(shù)據(jù),優(yōu)化信號燈控制,減少擁堵B.自動駕駛汽車可以提高交通安全,降低人為因素導致的事故發(fā)生率C.智能交通系統(tǒng)能夠完全解決城市的交通問題,無需其他基礎設施的改進D.利用人工智能預測交通需求,合理規(guī)劃公共交通線路和站點2、人工智能在金融領域的應用包括風險評估、投資決策和欺詐檢測等。假設一個銀行正在使用人工智能進行風險評估,以下關(guān)于金融領域人工智能應用的描述,正確的是:()A.人工智能可以完全取代人類專家的判斷,獨立做出準確的風險評估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對人工智能在金融領域的應用效果沒有影響C.結(jié)合人工智能模型和人類專家的經(jīng)驗,可以更有效地進行金融風險評估和管理D.人工智能在金融領域的應用不存在任何風險和監(jiān)管挑戰(zhàn)3、在人工智能的藥物研發(fā)中,機器學習可以輔助藥物分子的設計和篩選。假設要開發(fā)一種治療特定疾病的新藥,以下哪種機器學習方法可能最有助于找到潛在的有效分子結(jié)構(gòu)?()A.分類算法B.回歸分析C.聚類分析D.強化學習4、人工智能中的聯(lián)邦學習技術(shù)旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型的協(xié)同訓練。假設多個機構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓練一個模型。以下哪種聯(lián)邦學習算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學習B.縱向聯(lián)邦學習C.聯(lián)邦遷移學習D.以上框架根據(jù)具體情況選擇5、在人工智能的圖像分割任務中,假設要將一張醫(yī)學圖像中的腫瘤區(qū)域準確分割出來,以下關(guān)于選擇分割算法的考慮,哪一項是最關(guān)鍵的?()A.算法的計算復雜度,以確保能夠快速處理大量圖像B.算法在其他領域的應用效果,而不是針對醫(yī)學圖像的特定性能C.算法是否能夠利用多模態(tài)的醫(yī)學圖像數(shù)據(jù),如CT、MRI等D.算法是否具有漂亮的可視化效果,而不是分割的準確性6、人工智能中的遷移學習是一種有效的技術(shù)。假設要將一個在大規(guī)模數(shù)據(jù)集上訓練好的圖像分類模型應用到一個特定的小數(shù)據(jù)集上,以下關(guān)于遷移學習的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進行微調(diào),快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無法在新數(shù)據(jù)集上使用,需要重新訓練C.遷移學習只能在相同領域的任務之間進行,不同領域無法應用D.遷移學習會導致模型過擬合新數(shù)據(jù)集,降低泛化能力7、情感計算是人工智能的一個新興領域,旨在讓計算機理解和處理人類的情感。假設要開發(fā)一個能夠識別用戶情感狀態(tài)的系統(tǒng)。以下關(guān)于情感計算的描述,哪一項是不準確的?()A.可以通過分析語音、面部表情和文本等多模態(tài)信息來判斷情感B.情感計算的應用可以包括心理咨詢、客戶服務等領域C.目前的情感計算技術(shù)已經(jīng)能夠準確無誤地識別和理解所有復雜的人類情感D.情感模型的訓練需要大量標注了情感標簽的數(shù)據(jù)8、在自然語言處理中,機器翻譯是一個重要的應用。假設正在開發(fā)一種新的機器翻譯模型,以下關(guān)于機器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機器翻譯方法總是能夠生成最準確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡機器翻譯模型不需要大量的平行語料進行訓練就能達到很好的效果C.結(jié)合統(tǒng)計方法和神經(jīng)網(wǎng)絡的機器翻譯模型能夠更好地處理復雜的語言結(jié)構(gòu)和語義D.機器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)9、人工智能在農(nóng)業(yè)領域的應用具有很大潛力。假設要利用人工智能技術(shù)實現(xiàn)農(nóng)作物的病蟲害監(jiān)測,以下關(guān)于這種應用的描述,正確的是:()A.可以通過分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗和判斷,獨立完成病蟲害的防治工作C.由于農(nóng)作物生長環(huán)境的復雜性,人工智能在病蟲害監(jiān)測中的應用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測設備越多,人工智能病蟲害監(jiān)測系統(tǒng)的準確性就越高10、在人工智能的自然語言生成任務中,假設要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓練的策略,哪一項是不正確的?()A.使用預訓練的語言模型,并在特定任務上進行微調(diào)B.從簡單的句子生成開始,逐漸過渡到復雜的文章生成C.不使用任何先驗知識或語言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動的學習D.引入對抗訓練,提高生成文本的質(zhì)量和多樣性11、人工智能在醫(yī)療影像診斷中的應用越來越廣泛。假設利用人工智能輔助醫(yī)生診斷X光片,以下關(guān)于其應用的描述,哪一項是不正確的?()A.能夠快速檢測出影像中的異常區(qū)域,提高診斷效率B.可以為醫(yī)生提供量化的分析指標和輔助診斷建議C.人工智能的診斷結(jié)果總是準確無誤的,醫(yī)生可以完全依賴D.醫(yī)生的專業(yè)知識和臨床經(jīng)驗在結(jié)合人工智能診斷結(jié)果時仍然非常重要12、人工智能在醫(yī)療影像診斷中的應用不斷發(fā)展。以下關(guān)于人工智能在醫(yī)療影像診斷應用的說法,不正確的是()A.能夠輔助醫(yī)生更快速、準確地檢測病變和異常B.可以提高診斷的一致性和重復性,減少人為誤差C.人工智能的診斷結(jié)果可以完全替代醫(yī)生的專業(yè)判斷D.需要與醫(yī)生的臨床經(jīng)驗和專業(yè)知識相結(jié)合,共同為患者提供診斷服務13、人工智能中的遷移學習方法可以提高模型的泛化能力。假設要將一個在大規(guī)模圖像數(shù)據(jù)集上訓練好的模型應用于特定領域的圖像識別任務,以下關(guān)于遷移學習的描述,哪一項是不正確的?()A.可以將預訓練模型的參數(shù)作為初始值,在新數(shù)據(jù)上進行微調(diào)B.能夠利用已有的知識和特征,減少在新任務上的數(shù)據(jù)標注和訓練時間C.遷移學習在任何情況下都能顯著提高新任務的模型性能D.需要根據(jù)新任務的特點選擇合適的預訓練模型和遷移策略14、人工智能中的自動推理技術(shù)旨在讓計算機自動進行邏輯推理和問題求解。以下關(guān)于自動推理的說法,不正確的是()A.自動推理可以應用于定理證明、規(guī)劃和診斷等領域B.基于規(guī)則的推理和基于模型的推理是自動推理的常見方法C.自動推理系統(tǒng)能夠處理所有復雜的邏輯問題,無需人類干預D.不確定性推理和非單調(diào)推理是自動推理中的難點和研究熱點15、在人工智能的對話系統(tǒng)中,假設需要根據(jù)用戶的上下文和歷史對話信息生成連貫且有針對性的回復。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(RNN)或長短時記憶網(wǎng)絡(LSTM)捕捉序列信息B.只關(guān)注當前輸入的文本,不考慮歷史信息C.對上下文信息進行簡單的統(tǒng)計分析D.隨機生成回復,不依賴上下文16、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點進行決策。假設要對大量的文本數(shù)據(jù)進行分類,以下關(guān)于算法選擇的描述,哪一項是不正確的?()A.決策樹算法簡單直觀,適用于處理具有明顯特征差異的文本數(shù)據(jù)B.支持向量機在小樣本數(shù)據(jù)上表現(xiàn)較好,可用于高精度的文本分類C.隨機森林算法通過集成多個決策樹,能夠提高分類的穩(wěn)定性和準確性D.選擇算法時只考慮算法的準確性,而無需考慮計算資源和訓練時間的需求17、當利用人工智能技術(shù)進行股票市場的預測時,需要綜合考慮多種因素,如公司財務數(shù)據(jù)、宏觀經(jīng)濟指標、市場情緒等。在這種復雜的場景下,以下哪種人工智能方法可能具有較大的潛力?()A.基于規(guī)則的專家系統(tǒng)B.強化學習C.遺傳算法D.模糊邏輯18、人工智能中的無監(jiān)督學習可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無監(jiān)督學習的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學習方法B.無監(jiān)督學習不需要事先標注數(shù)據(jù),能夠自動從數(shù)據(jù)中學習特征C.無監(jiān)督學習的結(jié)果通常難以解釋和評估,應用范圍相對較窄D.可以用于數(shù)據(jù)預處理、特征提取和異常檢測等任務19、假設要開發(fā)一個能夠理解人類情感和意圖的人工智能助手,例如根據(jù)用戶的情緒提供相應的服務,以下哪種技術(shù)和數(shù)據(jù)可能是關(guān)鍵的?()A.情感計算技術(shù)和情感標注數(shù)據(jù)B.意圖識別技術(shù)和用戶行為數(shù)據(jù)C.自然語言理解技術(shù)和多模態(tài)數(shù)據(jù)D.以上都是20、在人工智能的醫(yī)療應用中,疾病診斷是一個重要的方向。假設我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項是不準確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨立做出準確的判斷C.有助于提高診斷的效率和準確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗和專業(yè)知識進行綜合判斷21、在人工智能的智能推薦系統(tǒng)中,假設要為用戶提供個性化的推薦服務,以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點,能夠提供更準確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求22、人工智能中的情感計算旨在讓計算機理解和處理人類的情感。假設我們要開發(fā)一個能夠根據(jù)用戶的語音和文本判斷其情感狀態(tài)的系統(tǒng),以下關(guān)于情感計算的描述,哪一項是不正確的?()A.可以通過分析語音的語調(diào)、語速等特征來判斷情感B.文本情感分析通常依賴于情感詞典和機器學習算法C.情感計算的準確性完全取決于數(shù)據(jù)的質(zhì)量和規(guī)模D.多模態(tài)情感分析結(jié)合了語音、文本、面部表情等多種信息源23、在自然語言處理領域,情感分析是一項重要的任務。假設要分析大量的在線商品評論,以確定消費者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預定義的情感詞來判斷情感傾向B.利用深度學習模型,如循環(huán)神經(jīng)網(wǎng)絡(RNN),自動學習語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機器學習分類算法,如支持向量機(SVM)24、人工智能中的生成對抗網(wǎng)絡(GAN)在圖像生成和數(shù)據(jù)增強等方面表現(xiàn)出色。假設要使用GAN生成逼真的人臉圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN的訓練過程非常穩(wěn)定,不會出現(xiàn)模式崩潰等問題B.生成器和判別器的能力不需要平衡,只要其中一個強大就能生成好的圖像C.GAN可以通過不斷的對抗訓練,學習到真實數(shù)據(jù)的分布,從而生成逼真的新樣本D.GAN只能用于圖像生成,不能應用于其他領域的數(shù)據(jù)生成25、在人工智能的倫理和法律問題中,算法偏見是一個需要關(guān)注的重點。假設一個招聘用的人工智能系統(tǒng)由于數(shù)據(jù)偏差導致對某些特定群體的不公平篩選。以下哪種方法在發(fā)現(xiàn)和糾正算法偏見方面最為重要?()A.算法審計B.數(shù)據(jù)清洗和預處理C.引入多樣化的數(shù)據(jù)集D.以上方法綜合運用二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在社會發(fā)展未來展望和挑戰(zhàn)應對中的策略。2、(本題5分)簡述人工智能在公共服務創(chuàng)新和社會治理中的應用。3、(本題5分)說明人工智能在水利和水資源管理中的潛力。4、(本題5分)簡述人工智能在法律領域的應用和挑戰(zhàn)。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)分析一個利用人工智能進行智能簡歷篩選系統(tǒng),探討其如何從大量簡歷中挑選合適候選人。2、(本題5分)考察某社交平臺運用人工智能進行內(nèi)容審核的案例,分析其準確性和公正性。3、(本題5分)以某智能廣播電視節(jié)目推薦系統(tǒng)為例,探討人工智能在內(nèi)容篩選和用戶興趣匹配中的應用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論