




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題18.4矩形的性質(zhì)與判定【九大題型】
【人教版】
【題型1由矩形的性質(zhì)求線段的長(zhǎng)度】...........................................................1
【超型2由矩形的性質(zhì)求角的度數(shù)】.............................................................2
【題型3由矩形的性質(zhì)求面積】.................................................................3
【題型4矩形的性質(zhì)與坐標(biāo)軸的綜合運(yùn)用】.......................................................4
【題型5矩形判定的條件】......................................................................6
【題型6證明四邊形是矩形】...................................................................7
【題型7矩形中多結(jié)論問(wèn)題】..................................................................10
【題型8矩形的判定與性質(zhì)綜合】..............................................................12
【題型9直角三角形斜邊的中線】...............................................................14
?**一更三
【知識(shí)點(diǎn)1矩形的定義】
有一個(gè)角是直角的平行四邊形是矩形.
【知識(shí)點(diǎn)2矩形的性質(zhì)】
①平行四邊形的性質(zhì)矩形都具有;②角:矩形的四個(gè)角都是直角;③邊:鄰邊垂直;④對(duì)角線:矩形的對(duì)
角線相等;⑤矩形是軸對(duì)稱圖形,又是中心對(duì)稱圖形.它有2條對(duì)稱軸,分別是每組對(duì)邊中點(diǎn)連線所在的
直線;對(duì)稱中心是兩條對(duì)角線的交點(diǎn).
【題型1由矩形的性質(zhì)求線段的長(zhǎng)度】
【例1】(2022春?新泰市期末)如圖,在矩形A8CO中,AD=472,對(duì)角線AC與8。相交于點(diǎn)。,DE
LAC,垂足為點(diǎn)E,CE=OE,則。E的長(zhǎng)為()
【變式1-1](2022春?開州區(qū)期末)如圖,在矩形/WCD中,對(duì)角線AC、8。相交丁點(diǎn)O,D尸垂直平分
0C,交AC于點(diǎn)E,交8C于點(diǎn)立連接AR若BD=2a,DF=2,則A尸的長(zhǎng)為(
A.V6B.2^2C.V7D.3
【變式1-2](2022?碑林區(qū)校級(jí)模擬)如圖,在矩形A8CO中,。是B。的中點(diǎn),E為A。邊上一點(diǎn),且有
AE=OB=2.連接OE,若NAEO=75°,則。E的長(zhǎng)為()
A.\B.V5C.2D.2V3-2
【變式1-3](2022?南崗區(qū)期末)如圖,矩形ABCO中,點(diǎn)E,尸分別在4。,C。上,且。/=2OF=2,
連接BE,EF,8F,且8/平分NEBC,NEFB=45°,連接CE■交8尸于點(diǎn)G,則線段EG的長(zhǎng)為
【題型2由矩形的性質(zhì)求角的度數(shù)】
【例2】(2022春?灤水區(qū)期中)如圖,在矩形A8c。中,AC.8。交于點(diǎn)。,。從LAC于點(diǎn)E,ZAOD=
110°,則NCQE大小是()
A.55°B.40°C.35°D.20°
【變式2-1](2022?武昌區(qū)期末)如圖,把一張矩形紙片沿對(duì)角線折疊,如果量得NEOf=22°,則NFQ4
的大小是()
E
C.24°D.68°
【變式2-2](2022春?江夏區(qū)期中)如圖,矩形4BCO中,AB=2,AO=1,點(diǎn)M在邊。C上,若AM平
)
C.75°D.30°
【變式2-3](2022春?莫旗期末)如圖,若將四根木條釘成的矩形木框變形為平行四邊形A8CO的形狀,
并使其面積為矩形面積的一半,則平行四邊形ABC。的最大內(nèi)角的大小是.
【題型3由矩形的性質(zhì)求面積】
[例3](2022春?浦東新區(qū)期末)我們把兩條對(duì)角線所成兩個(gè)角的大小之比是1:2的矩形叫做“和諧矩
形”,如果一個(gè)“和諧矩形”的對(duì)角線長(zhǎng)為10cw,則矩形的面積為。層.
【變式3-1](2022?成都)如圖,過(guò)矩形ABCD的對(duì)角線8。上一點(diǎn)K分別作矩形兩邊的平行線MN與PQ,
那么圖中矩形AWKP的面積S與矩形QCNK的面積S2的大小關(guān)系是S—52;(填或或
“=”)
3。。
【變式32](2022春?成都期末)如圖,點(diǎn)E是矩形八8CD邊人。上一動(dòng)點(diǎn),連接8E,以8E邊作矩形
【變式4-1](2022春?任城區(qū)期末)定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三
角形為“智慧三角形”.如圖,在平面直角坐標(biāo)系X。),中,矩形O48C的邊04=3,0C=4,點(diǎn)M(2,
0),在邊48存在點(diǎn)P,使得ACMP為“智慧三角形”,則點(diǎn)。的坐標(biāo)為()
B.(3,1)或(3,3)
C.(3,或(3,1)D.(3,;)或(3,1)或(3,3)
【變式4-2](2022?西平縣模擬)已知在矩形A8C。中,A8=4,BC=y,O為BC上一?點(diǎn),BO=g如圖
所示,以8c所在直線為x軸,0為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,M為線段OC上的一點(diǎn).
(I)若點(diǎn)M的坐標(biāo)為(1,0),如圖1,以O(shè)M為一邊作等腰△OMP,使點(diǎn)P在矩形A8C。的一邊上,
則符合條件的等腰三角形有兒個(gè)?請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);
(2)若將(1)中的點(diǎn)M的坐標(biāo)改為(4,0),其他條件不變,如圖2,那么符合條件的等腰三角形有
幾個(gè)?求出所有符合條件的點(diǎn)P的坐標(biāo).
圖1圖2
【變式4-3](2022春?浦江縣期中)如圖,長(zhǎng)方形O/WC中,。為平面直角坐標(biāo)系的原點(diǎn),八點(diǎn)的坐標(biāo)為
(4,0),。點(diǎn)的坐標(biāo)為(0,6),點(diǎn)4在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度
沿著O-C-8-A-O的路線移動(dòng)(移動(dòng)一周).
(1)寫出點(diǎn)8的坐標(biāo);
(2)當(dāng)點(diǎn)尸移動(dòng)了4秒時(shí),求出點(diǎn)P的坐標(biāo);
(3)在移動(dòng)過(guò)程中,當(dāng)aOB尸的面積是10時(shí),直接寫出點(diǎn)尸的坐標(biāo).
八
y
C----------
OAx
【知識(shí)點(diǎn)3矩形的判定方法】
①矩形的定義:有一個(gè)角是直角的平行四邊形是矩形;②有三個(gè)角是直角的四邊形是矩形;
③對(duì)角線相等的平行四邊形是矩形(或“對(duì)角線互相平分且相等的四邊形是矩形”).
【題型5矩形判定的條件】
【例5】(2022春?夏邑縣期中)如圖,四邊形A8CO為平行四邊形,延長(zhǎng)到E,使。石=A。,連接EB,
EC,DB,添加一個(gè)條件,不能使四邊形OACE成為矩形的是()
A.AB=BEB.BE1DCC.ZADB=903D.CELDE
【變式5-1](2022春?江油市期末)在四邊形ABC。中,AC.BD交于點(diǎn)、O,在下列條件中,不能判定四
邊形A/3CO為矩形的是()
A.AO=CO,BO=DO,N%0=900
B.AB=CD,AD=BC,AC=BD
C./BAD=/BCD,/ABC+/8CO=180°,ACLBD
D.ZBAD=ZABC=9Qa,AC=BD
【變式5-2](2022春?仙居縣期末)如圖,四邊形ABC。為平行四邊形,延長(zhǎng)A。到E,使DE=AD,連
接EB,EC,DB,添加一個(gè)條件,不能使四邊形D8CE成為甲.形的是()
A.AB=BEB.CEA.DEC.ZADB=903D.BELDC
【變式5-3](2022?西城區(qū)一模)如圖,在△ABC中,。,E分別是AB,AC的中點(diǎn),點(diǎn)F,G在邊上,
旦。G=M.只需添加一個(gè)條件即可證明四邊形GE是矩形,這個(gè)條件可以是.(寫出一個(gè)
即可)
【題型6證明四邊形是矩形】
【例6】(2022春?南譙區(qū)期末)如圖,在平行四邊形ABC。中,對(duì)角線4C,8。相交于點(diǎn)O,若E,f是
線段AC上兩動(dòng)點(diǎn),同時(shí)分別從4,。兩點(diǎn)出發(fā)以Icm/s的速度向點(diǎn)C,4運(yùn)動(dòng).
(I)求證:△人。石9△CBF;
(2)若BD=8cm,AC=14c/n,當(dāng)運(yùn)動(dòng)時(shí)間/為多少秒時(shí),四邊形DEB尸是矩形?
【變式6-1](2022春?海陵區(qū)期末)如圖,在△ABC中,。是邊AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MM
交N4CB的平分線于點(diǎn)E,交△相(7的外角NACO的平分線于點(diǎn)F.給出下列信息:①M(fèi)N//BC;②OE
=OC;③OF=OC.
(I)請(qǐng)?jiān)谏鲜?條信息中選擇其中一條作為條件,證明:OE=OF;
(2)在(1)的條件下,連接AE、AF,當(dāng)點(diǎn)。在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECT是矩形?
請(qǐng)說(shuō)明理由.
【變式6-2](2022春?津南區(qū)期末)已知口ABC。,對(duì)角線AC,8。相交于點(diǎn)。(AC>4O),點(diǎn)£〃分
別是OA,OC上的動(dòng)點(diǎn).
(I)如圖①,若AE=CF,求證:四邊形£/近。是平行四邊形;
(II)如圖②,若OE=OB,OF=OD,求證:四邊形E8如是矩形.
圖①圖②
【變式6-3](2022春?洪澤區(qū)期末)在矩形"C。中,AB=6,/?C=8,E、〃是對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn),
分別從A、C同時(shí)出發(fā)相向而行,速度均為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為/秒,其中0W店10.
⑴若G、”分別是A。、8c的中點(diǎn),則下列關(guān)于四邊形EGFH(£、尸相遇時(shí)除外)的判斷:①一定
是平行四邊形;②一定是矩形;③一定是菱形,正確的是—;(直接填序號(hào),不用說(shuō)理)
(2)在(1)的條件下,若四邊形EGF”為矩形,求,的值.
【題型7矩形中多結(jié)論問(wèn)題】
【例7】(2022?綏化一模)如圖,在一張矩形紙片ABCD中AB=4,BC=8,點(diǎn)E,產(chǎn)分別在A。,BC上,
將紙片ABCO沿直線E”折疊,點(diǎn)C落在A。上的點(diǎn)”處,點(diǎn)。落在點(diǎn)G處,連接CE,CH.有以下四
個(gè)結(jié)論:①四邊形CFHE是菱形;②。七平分NOCH;③線段B尸的取值范圍為3WB尸W4;④當(dāng)點(diǎn)”與
點(diǎn)人重合時(shí),EF=5.以上結(jié)論中,其中正確結(jié)論的個(gè)數(shù)有()
【變式7-1](2022春?南充期末)如圖,矩形A8C。中,M,N分別是邊A8,C。的中點(diǎn),8P_LAN于P,
C尸的延長(zhǎng)線交A。于Q.下列結(jié)論:①PM=CN;②PM_LCQ;?PQ=AQ,?DQ<2PN.其中結(jié)論正
確的有()
【變式7-2](2022春?泉州期末)如圖,點(diǎn)P是矩形ABCO內(nèi)一點(diǎn),連結(jié)附、PB、PC、PD,設(shè)△以B、
△PBC、△PC。、△PDA的面積分別為S、S2、S3、8,以下四個(gè)判斷:
①當(dāng)/以8=/尸。4時(shí),B、P、。三點(diǎn)共線
②存在唯---點(diǎn)P,使用=PB=PC=PD
③不存在到矩形ABC。四條邊距離都相等的點(diǎn)P
④若S=S2,則S3=S4
其中正確的是—.(寫出所有正確結(jié)論的序號(hào))
【變式7-3](2022春?興文縣期中)如圖,矩形/WCD中,AC,8。相交于點(diǎn)O,過(guò)點(diǎn)B作BFLAC交CD
于點(diǎn)F,交AC于點(diǎn)M,過(guò)點(diǎn)。作OE〃8戶交48于點(diǎn)石,交AC于點(diǎn)N,連接正MEM.則下列結(jié)論:
①ON=BM:②EM〃尸N;③。尸=N尸;④當(dāng)人。=人。時(shí),四邊形OEBr是菱豚其中正確的結(jié)論是.
c
B
【題型8矩形的判定與性質(zhì)綜合】
【例8】(2022春?海淀區(qū)期末)如圖,在△A6C中,D是A8上一點(diǎn),AD=DC,DE平分乙4DC交AC■于
點(diǎn)、E,DF平分NBDC交BC于點(diǎn)F,/。/。=90°.
(I)求證:四邊形CE。〃是矩形;
(2)若/8=3()°,人。=2,連接BE,求3£的長(zhǎng).
【變式81】(2022?息烽縣二模)如圖,菱形A8CD的對(duì)角線AC、8。交于點(diǎn)O,過(guò)點(diǎn)8作8E〃八C,且
BE=-AC,連接EC、ED.
(1)求證:四邊形8ECO是矩形:
(2)若4C=2,ZABC=6Q°,求。E的長(zhǎng).
【變式8-2](2022?開福區(qū)校級(jí)二模)如圖,平行四邊形A4C7)的對(duì)角線AC、BO相交于點(diǎn)。,過(guò)點(diǎn)A作
AF1CD,垂足為F,延長(zhǎng)。。到點(diǎn)使CE=OF,連接
(1)求證:四邊形A/3E尸是矩形;
(2)若A8=5,CF=2,AC1BD,連接OE,求OE的長(zhǎng).
【變式8-3](2022?崇左)如圖,。是矩形ABCO的對(duì)角線的交點(diǎn),E、F、G、”分別是。4、OB、OC、
。。上的點(diǎn),^.AE=BF=CG=DH.
(1)求證:四邊形是矩形;
(2)若E、F、G、”分別是。4、OB、0C、0。的中點(diǎn),且。G_LAC,OF=2cm,求矩形A8C。的面
積.
【知識(shí)點(diǎn)4直角三角形斜邊中線】
在直角三角形中,斜邊上的中線等于斜邊的一半.
【題型9直角三角形斜邊的中線】
【例9】(2022?青縣二模)如圖,直角AA6c■中,ZB=9
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何充分發(fā)揮時(shí)間優(yōu)勢(shì)備考信息系統(tǒng)項(xiàng)目管理師試題及答案
- 公共政策對(duì)教育公平的實(shí)現(xiàn)路徑探討試題及答案
- 機(jī)電工程創(chuàng)新技術(shù)開發(fā)試題及答案
- 項(xiàng)目啟動(dòng)前的準(zhǔn)備工作試題及答案
- 公共政策的管理與評(píng)估框架試題及答案
- 公共政策實(shí)務(wù)的最佳實(shí)踐試題及答案
- 有趣的軟件設(shè)計(jì)師考試試題與答案探討
- 公共政策過(guò)程中的透明度與公眾信任試題及答案
- 社會(huì)公共政策與企業(yè)的連結(jié)試題及答案
- 網(wǎng)絡(luò)架構(gòu)設(shè)計(jì)試題及答案
- 澳大利亞建筑規(guī)范
- 2024年紫金礦業(yè)集團(tuán)股份限公司校園招聘歷年高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 消化道出血護(hù)理查房7
- 太陽(yáng)能光伏發(fā)電設(shè)備采購(gòu)合同
- 江蘇省常州市教育學(xué)會(huì)2023-2024學(xué)年下學(xué)期八年級(jí)數(shù)學(xué)考試卷
- DZ∕T 0214-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 銅、鉛、鋅、銀、鎳、鉬(正式版)
- 2024年新教科版六年級(jí)下冊(cè)科學(xué)期末綜合測(cè)試卷(十九)
- 精神科進(jìn)修匯報(bào)
- 2023年新高考天津卷歷史高考真題解析(參考版)
- 人工智能在文化遺產(chǎn)數(shù)字化保護(hù)中的應(yīng)用
- GB/T 41666.4-2024地下無(wú)壓排水管網(wǎng)非開挖修復(fù)用塑料管道系統(tǒng)第4部分:原位固化內(nèi)襯法
評(píng)論
0/150
提交評(píng)論