重慶應用技術職業學院《中外書籍形態設計》2023-2024學年第二學期期末試卷_第1頁
重慶應用技術職業學院《中外書籍形態設計》2023-2024學年第二學期期末試卷_第2頁
重慶應用技術職業學院《中外書籍形態設計》2023-2024學年第二學期期末試卷_第3頁
重慶應用技術職業學院《中外書籍形態設計》2023-2024學年第二學期期末試卷_第4頁
重慶應用技術職業學院《中外書籍形態設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁重慶應用技術職業學院《中外書籍形態設計》

2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、對于視頻中的異常檢測任務,假設要在一段監控視頻中檢測出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準確檢測異常?()A.建立正常行為模型,對比檢測異常B.只關注視頻中的顯著運動區域C.隨機判斷視頻中的幀是否異常D.不進行異常檢測,直接忽略異常事件2、計算機視覺中的語義分割旨在為圖像中的每個像素分配一個類別標簽。假設要對醫學影像中的腫瘤區域進行語義分割,以下關于模型評估指標的選擇,哪一項是最為關鍵的?()A.準確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分數,綜合考慮準確率和召回率D.平均交并比(MIoU),衡量分割結果與真實標簽的重合程度3、在計算機視覺的視頻分析中,需要處理連續的圖像幀。假設要分析一段監控視頻中的人員行為,以下關于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復雜的多人交互場景無法進行有效的分析4、計算機視覺中的視覺跟蹤在監控、機器人導航等領域有廣泛應用。假設一個機器人需要跟蹤一個移動的物體,同時適應物體的外觀變化和環境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關濾波的跟蹤方法B.基于深度學習的孿生網絡跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運動估計的跟蹤方法5、計算機視覺中的目標計數任務,例如統計圖像中物體的數量。假設要計算一張果園圖片中蘋果的數量,以下關于目標計數方法的描述,正確的是:()A.基于傳統的圖像分割和對象識別方法可以準確快速地完成目標計數B.深度學習中的回歸模型不適合用于目標計數任務C.目標的大小、形狀和分布對計數結果沒有影響D.結合深度學習的密度估計方法能夠有效地實現目標計數6、計算機視覺中的姿態估計任務,確定物體在空間中的位置和方向。假設要估計一個機器人手臂的姿態,以下關于姿態估計方法的描述,正確的是:()A.基于幾何模型的姿態估計方法在復雜環境中總是能夠準確估計姿態B.深度學習中的端到端姿態估計網絡不需要對物體的結構和運動有先驗了解C.姿態估計的結果不受相機參數和拍攝角度的影響D.結合多種傳感器數據和深度學習的方法可以提高姿態估計的精度和魯棒性7、在計算機視覺的車牌識別任務中,假設要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關注車牌的顏色特征D.隨機猜測車牌號碼8、假設要開發一個能夠對指紋進行識別和認證的計算機視覺系統,以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準確性?()A.細節點提取B.方向場提取C.紋理特征提取D.以上都是9、在計算機視覺的應用中,人臉識別技術受到廣泛關注。假設一個人臉識別系統正在進行身份驗證,以下關于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現準確的人臉識別B.光照變化和面部表情對人臉識別的準確率沒有影響C.結合深度學習模型和多模態信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統不需要考慮數據的隱私和安全問題10、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設要對一段監控視頻中的人員動作進行分類,以下關于動作識別方法的描述,正確的是:()A.基于手工特征和傳統分類器的方法能夠處理復雜的動作變化,準確率高B.深度學習中的循環神經網絡(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經網絡能夠同時處理空間和時間維度的信息,適用于動作識別任務D.動作識別系統對視頻的拍攝角度和背景變化不敏感,具有很強的通用性11、在計算機視覺的圖像檢索任務中,根據用戶的需求從圖像數據庫中查找相關圖像。假設要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內容特征,如顏色、形狀和紋理等,進行相似性度量和檢索B.深度學習模型能夠提取更具語義和判別力的特征,提高圖像檢索的準確性C.圖像檢索的結果只取決于圖像的特征表示,與檢索算法的效率無關D.可以結合用戶的反饋和交互,不斷優化圖像檢索的結果12、在計算機視覺的姿態估計任務中,假設要估計一個物體在三維空間中的姿態,例如估計一個機器人手臂的關節角度。以下哪種技術或方法可能被用于實現這一目標?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學習模型直接預測姿態參數C.僅根據物體的外觀形狀進行估計D.隨機猜測物體的姿態13、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優勢在于()A.去噪效果好B.保持圖像細節C.計算效率高D.以上都是14、計算機視覺中的圖像分割任務旨在將圖像分割成不同的區域。假設要對一張風景圖片進行分割,區分天空、陸地和水面。以下關于圖像分割方法的描述,哪一項是錯誤的?()A.基于閾值的分割方法簡單快速,但對于復雜圖像效果不佳B.區域生長法從種子點開始,逐步合并相似的區域C.深度學習中的全卷積網絡(FCN)在圖像分割中表現出色,能夠生成精確的分割結果D.圖像分割的結果總是清晰明確,不存在模糊或錯誤的邊界15、在計算機視覺的圖像生成任務中,假設要生成具有真實感的自然圖像。以下關于圖像生成方法的描述,正確的是:()A.生成對抗網絡(GAN)能夠生成逼真的圖像,但訓練過程不穩定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像16、計算機視覺中的場景理解是一項具有挑戰性的任務。假設要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠將圖像中的每個像素分類為不同的場景元素,但無法提供元素之間的關系B.目標檢測結合語義分割可以實現對場景的初步理解,但對于復雜的場景結構難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關系,但建模過程復雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息17、圖像分類是計算機視覺的常見任務之一。假設要對大量的自然風景圖片進行分類,如山脈、森林、海灘等。在進行圖像分類時,以下關于數據增強的方法,哪一項可能不太有效?()A.對圖像進行隨機裁剪和旋轉,增加數據的多樣性B.改變圖像的色彩和對比度,模擬不同的拍攝條件C.直接復制原圖像,增加數據量D.給圖像添加隨機噪聲,增強模型的魯棒性18、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是19、計算機視覺在農業領域的應用中,例如對農作物的生長監測。假設要通過圖像分析評估農作物的健康狀況,以下哪種特征可能對判斷病蟲害的存在較為敏感?()A.農作物的顏色和紋理B.農作物的高度和形狀C.農田的土壤濕度D.農田的地理位置20、在計算機視覺的視覺跟蹤任務中,目標在運動過程中可能會發生形變、遮擋和光照變化等情況。為了提高跟蹤的穩定性和準確性,以下哪種策略可能是有效的?()A.模型更新機制B.多特征融合C.抗遮擋處理D.以上都是21、視頻分析是計算機視覺的一個重要領域。假設要對一段監控視頻中的行為進行分析和理解,以下關于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨立的圖像進行處理,就能準確分析視頻中的行為B.考慮視頻的時序信息和幀間的相關性對于理解復雜的行為非常重要C.視頻分析只適用于簡單的動作識別,對于復雜的多人物交互行為無法處理D.視頻的分辨率和幀率對視頻分析的結果沒有影響22、在計算機視覺的圖像分割任務中,需要將圖像中的不同物體或區域準確地劃分出來。假設要對一張包含多個水果的圖像進行精確分割,每個水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰性的情況時表現更為出色?()A.基于閾值的分割B.基于區域的分割C.基于邊緣檢測的分割D.基于深度學習的語義分割23、計算機視覺中的圖像配準是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關于圖像配準的敘述,不正確的是()A.圖像配準需要找到圖像之間的對應點或特征,然后進行變換和對齊B.圖像配準在醫學圖像分析、遙感圖像處理和三維重建等領域有著廣泛的應用C.圖像配準的精度和魯棒性受到圖像質量、噪聲和幾何變形等因素的影響D.圖像配準是一個簡單的過程,不需要復雜的算法和優化24、計算機視覺中的圖像配準任務是將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設要將兩張拍攝角度不同的城市風景照片進行配準。以下關于圖像配準方法的描述,哪一項是不正確的?()A.可以基于特征點匹配的方法,找到兩張圖像中的對應點,然后計算變換矩陣B.基于灰度信息的配準方法通過比較圖像的像素值來實現配準C.深度學習中的自監督學習方法可以用于圖像配準,自動學習圖像之間的對應關系D.圖像配準總是能夠達到像素級別的精確對齊,不存在任何誤差25、計算機視覺中的場景理解任務旨在理解圖像或視頻中的整體場景信息。假設要理解一張城市街道的圖片中的場景。以下關于場景理解的描述,哪一項是錯誤的?()A.可以通過對物體、人物和環境的分析來理解場景的語義信息B.深度學習中的語義分割技術可以幫助區分場景中的不同區域和物體類別C.場景理解只需要考慮圖像中的視覺元素,不需要考慮上下文和先驗知識D.可以結合地理信息和時間信息,進一步豐富對場景的理解二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺中的圖像增強技術及其分類。2、(本題5分)解釋計算機視覺中的圖像質量評價指標。3、(本題5分)解釋計算機視覺中的人群密度估計任務。4、(本題5分)說明計算機視覺在眼鏡制造中的檢測和設計。三、分析題(本大題共5個小題,共25分)1、(本題5分)分析某游樂園的宣傳海報創意元素運用,討論其如何運用創意元素和游戲化設計,吸引游客參與,提升宣傳效果。2、(本題5分)分析某茶葉品牌的包裝和宣傳冊設計,研究如何運用傳統文化元素和現代設計手法展現茶葉的品質和文化內涵。3、(本題5分)觀察某家居裝飾品牌的產品安裝指南設計,分析其如何通過圖示和步驟說明,幫助用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論