廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題含解析_第1頁
廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題含解析_第2頁
廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題含解析_第3頁
廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題含解析_第4頁
廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省韶關市新豐縣一中2025年高二下數學期末學業質量監測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于“斜二測”畫圖法,下列說法不正確的是()A.平行直線的斜二測圖仍是平行直線B.斜二測圖中,互相平行的任意兩條線段的長度之比保持原比例不變C.正三角形的直觀圖一定為等腰三角形D.在畫直觀圖時,由于坐標軸的選取不同,所得的直觀圖可能不同2.已知,則()A. B.186 C.240 D.3043.定義:如果一個向量列從第二項起,每一項與它的前一項的差都等于同一個常向量,那么這個向量列做等差向量列,這個常向量叫做等差向量列的公差.已知向量列是以為首項,公差的等差向量列.若向量與非零向量)垂直,則()A. B. C. D.4.函數在上有唯一零點,則的取值范圍為A. B. C. D.5.若函數在上是增函數,則實數的取值范圍是()A. B. C. D.6.等差數列an中的a2?,??A.5 B.4 C.3 D.27.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.直三棱柱中,,,、分別為、的中點,則異面直線與所成角的余弦值為()A. B. C. D.9.函數的最大值為()A. B. C. D.10.下列四個命題中,其中錯誤的個數是()①經過球面上任意兩點,可以作且只可以作一個大圓;②經過球直徑的三等分點,作垂直于該直徑的兩個平面,則這兩個平面把球面分成三部分的面積相等;③球的面積是它大圓面積的四倍;④球面上兩點的球面距離,是這兩點所在截面圓上,以這兩點為端點的劣弧的長.A.0 B.1 C.2 D.311.函數的圖象大致為A. B. C. D.12.函數f(x)與它的導函數f'(x)的大致圖象如圖所示,設g(x)=f(x)exA.15 B.25 C.3二、填空題:本題共4小題,每小題5分,共20分。13.湖結冰時,一個球漂在其上,取出后(未弄破冰),冰面上留下了一個直徑為24cm,深為8cm的空穴,則該球的半徑為.14.西周初數學家商高在公元前1000年發現勾股定理的一個特例:勾三,股四,弦五.此發現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.15.已知一個總體為:、、、、,且總體平均數是,則這個總體的方差是______.16.過點的直線與圓相交于兩點,當弦的長取最小值時,直線的傾倒角等于___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數列滿足,等比數列滿足.(1)求數列的通項公式;(2)設,求數列的前項和.18.(12分)2019年某地初中畢業升學體育考試規定:考生必須參加長跑.擲實心球.1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學校在初三上學期開始時,為掌握全年級學生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規則如表1:(1)規定:學生1分鐘跳繩得分20分為優秀,在抽取的100名學生中,男生跳繩個數大等于185個的有28人,根據已知條件完成表2,并根據這100名學生測試成績,能否有99%的把握認為學生1分鐘跳繩成績優秀與性別有關?附:參考公式臨界值表:(2)根據往年經驗,該校初三年級學生經過一年的訓練,正式測試時每人每分鐘跳繩個數都有明顯進步.假設今年正式測試時每人每分鐘跳繩個數比初三上學期開始時個數增加10個,全年級恰有2000名學生,所有學生的跳繩個數X服從正態分布N(μ,σ2)(用樣本數據的平值和方差估計總體的期望和方差,各組數據用中點值代替)①估計正式測試時,1分鐘跳182個以上的人數(結果四舍五入到整數);②若在全年級所有學生中任意選取3人,正式測試時1分鐘跳195個以上的人數為ξ,求ξ占的分布列及期望.19.(12分)一個盒子裝有六張卡片,上面分別寫著如下六個函數:,,,(I)從中任意拿取張卡片,若其中有一張卡片上寫著的函數為奇函數,在此條件下,求兩張卡片上寫著的函數相加得到的新函數為奇函數的概率;(II)現從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數的卡片則停止抽取,否則繼續進行,求抽取次數的分布列和數學期望.20.(12分)已知函數.(1)若函數的圖象在處的切線過點,求的值;(2)當時,函數在上沒有零點,求實數的取值范圍;(3)當時,存在實數使得,求證:.21.(12分)在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為.(1)若,求C與l的交點坐標;(2)若C上的點到l的距離的最大值為,求.22.(10分)如圖,正四棱柱的底面邊長,若異面直線與所成角的大小為,求正四棱柱的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據斜二測畫法的特征,對選項中的命題進行分析、判斷正誤即可.【詳解】解:對于A,平行直線的斜二測圖仍是平行直線,A正確;對于B,斜二測圖中,互相平行的任意兩條線段的長度之比保持原比例不變,B正確;對于C,正三角形的直觀圖不一定為等腰三角形,如圖所示;∴C錯誤;對于D,畫直觀圖時,由于坐標軸的選取不同,所得的直觀圖可能不同,D正確.故選:C.本題考查了斜二測畫法的特征與應用問題,是基礎題.2、A【解析】

首先令,這樣可以求出的值,然后把因式分解,這樣可以變成兩個二項式的乘積的形式,利用兩個二項式的通項公式,就可以求出的會下,最后可以計算出的值.【詳解】令,由已知等式可得:,,設的通項公式為:,則常數項、的系數、的系數分別為:;設的通項公式為:,則常數項、的系數、的系數分別為:,,所以,故本題選A.本題考查了二項式定理的應用,正確求出通項公式是解題的關鍵.3、D【解析】

先根據等差數列通項公式得向量,再根據向量垂直得遞推關系,最后根據累乘法求結果.【詳解】由題意得,因為向量與非零向量)垂直,所以因此故選:D本題考查等差數列通項公式、向量垂直坐標表示以及累乘法,考查綜合分析求解能力,屬中檔題.4、C【解析】分析:函數有唯一零點,則即可詳解:函數為單調函數,且在上有唯一零點,故,解得故選點睛:函數為一次函數其單調性一致,不用分類討論,為滿足有唯一零點列出關于參量的不等式即可求解。5、D【解析】

由題意得在上恒成立,利用分離參數思想即可得出結果.【詳解】∵,∴,又∵函數在上是增函數,∴在恒成立,即恒成立,可得,故選D.本題主要考查了已知函數的單調性求參數的取值范圍,屬于中檔題.6、D【解析】

求導,根據導數得到a2,a4030是方程x【詳解】由題意可知:f'x=x2-8x+6,又a2,a4030是函數f∴log2本題考查了等差數列的性質,函數的極值,對數運算,綜合性強,意在考查學生的綜合應用能力.7、D【解析】取,則,但,故;取,則,但是,故,故“”是“”的既不充分也不必要條件,選D.8、B【解析】

以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角的余弦值.【詳解】以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,則、、、、,,、,設異面直線與所成角為,則,異面直線與所成角的余弦值為.故選:B本題考查了空間向量法求異面直線所成的角,解題的關鍵是建立恰當的坐標系,屬于基礎題.9、B【解析】分析:直接利用柯西不等式求函數的最大值.詳解:由柯西不等式得,所以(當且僅當即x=時取最大值)故答案為B.點睛:(1)本題主要考查柯西不等式求最值,意在考查學生對該知識的掌握水平和分析推理能力.(2)二元柯西不等式的代數形式:設均為實數,則,其中等號當且僅當時成立.10、C【解析】

結合球的有關概念:如球的大圓、球面積公式、球面距離等即可解決問題,對于球的大圓、球面積公式、球面距離等的含義的理解,是解決此題的關鍵.【詳解】對于①,若兩點是球的一條直徑的端點,則可以作無數個球的大圓,故①錯;

對于②三部分的面積都是,故②正確對于③,球面積=,是它大圓面積的四倍,故③正確;

對于④,球面上兩點的球面距離,是這兩點所在大圓上以這兩點為端點的劣弧的長,故④錯.

所以①④錯誤.

所以C選項是正確的.本題考查球的性質,特別是求兩點的球面距離,這兩個點肯定在球面上,做一個圓使它經過這兩個點,且這個圓的圓心在球心上,兩點的球面距離對應的是這個圓兩點之間的對應的較短的那個弧的距離.11、B【解析】由于,故排除選項.,所以函數為奇函數,圖象關于原點對稱,排除選項.,排除選項,故選B.12、B【解析】

結合圖象可得到f'(x)-f(x)<0成立的x的取值范圍,從而可得到g(x)【詳解】由圖象可知,y軸左側上方圖象為f'(x)的圖象,下方圖象為對g(x)求導,可得g'(x)=f'(x)-f(x)ex,結合圖象可知x∈(0,1)和x∈(4,5)時,f'(x)-f(x)<0,即g(x)在0,1和本題考查了函數的單調性問題,考查了數形結合的數學思想,考查了導數的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、13cm【解析】

設球半徑為R,則,解得,故答案為13.14、【解析】

由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.15、【解析】

利用總體平均數為求出實數的值,然后利用方差公式可求出總體的方差.【詳解】由于該總體的平均數為,則,解得.因此,這個總體的方差為.故答案為:.本題考查方差的計算,利用平均數和方差公式進行計算是解題的關鍵,考查運算求解能力,屬于基礎題.16、【解析】試題分析:圓心,當弦的長取最小值時,,.考點:直線與圓的位置關系.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】分析:(1)由已知可得數列為等差數列,根據等差數列的通項公式求得;再求出和,進而求出公比,代入等比數列的通項公式,即可求得數列的通項公式;(2)利用錯位相減法即可求出數列的前項和.詳解:解:(1),所以數列為等差數列,則;,所以,則.(2),則兩式相減得整理得.點睛:本題主要考查等差數列、等比數列的定義與通項公式,考查錯位相減法求數列前項和,考查學生運算求解能力.錯位相減法是必須掌握的求和方法之一:若,其中是公差為d的等差數列,是公比為的等比數列.具體運算步驟如下:1、寫出新數列的和.……(1)2、等式左右同時乘以等比數列部分的公比.……(2)3、兩式相減.(1)-(2)整理得:注意:首項系數為正,末項系數為負,中間有項.4、求.最后再化簡整理為最簡形式即可.18、(1)不能有的把握認為認為學生1分鐘跳繩成績優秀與性別有關;(2)①,②分布列見解析,期望值為.【解析】

(1)根據題目所給數據填寫好聯表,通過計算出,由此判斷不能有99%的把握認為認為學生分鐘跳繩成績優秀與性別有關.(2)根據頻率分布計算出平均數和方差,由此求得正態分布,計算出的概率,進而估計出個以上的人數.利用二項分布概率計算公式計算出概率,由此求得分布列和數學期望.【詳解】(1)表2如下圖所示:由公式可得因為所以不能有99%的把握認為認為學生1分鐘跳繩成績優秀與性別有關.(2)①而,故服從正態分布,故正式測試時,1分鐘跳182個以上的人數約為1683人.②,服從的分布列為:0123P本小題主要考查列聯表獨立性檢驗,考查正態分布均值和方差的計算,考查二項分布分布列和數學期望的求法,屬于中檔題.19、(1)(2)數學期望為.【解析】

(Ⅰ)所有的基本事件包括兩類:一類為兩張卡片上寫的函數均為奇函數;另一類為兩張卡片上寫的函數為一個是奇函數,一個為偶函數,先求出基本事件總數為,滿足條件的基本事件為兩張卡片上寫的函數均為奇函數,再求出滿足條件的基本事件個數為,由此能求出結果.(Ⅱ)ξ可取1,2,3,1.分別求出對應的概率,由此能求出ξ的分布列和數學期望.【詳解】解:(Ⅰ)為奇函數;為偶函數;為偶函數;為奇函數;為偶函數;為奇函數,所有的基本事件包括兩類:一類為兩張卡片上寫的函數均為奇函數;另一類為兩張卡片上寫的函數為一個是奇函數,一個為偶函數;基本事件總數為,滿足條件的基本事件為兩張卡片上寫的函數均為奇函數,滿足條件的基本事件個數為,故所求概率.(Ⅱ)可??;;;故的分布列為.的數學期望為.本題主要考查離散型隨機變量的分布列與數學期望,屬于中檔題.求解該類問題,首先要正確理解題意,其次要準確無誤的找出隨機變量的所以可能值,計算出相應的概率,寫出隨機變量的分布列,正確運用均值、方差的公式進行計算,也就是要過三關:(1)閱讀理解關;(2)概率計算關;(3)公式應用關.20、(1);(2)或;(3)證明見解析.【解析】分析:(1)先根據導數幾何意義得切線斜率,再根據兩點間斜率公式列等式,解得的值;(2)先求導數,根據a討論導數零點情況,再根據對應單調性確定函數值域,最后根據無零點確定最小值大于零或最大值小于零,解得結果,(3)先根據,解得,代入得,再轉化為一元函數:最后利用導數證明h(t)<0成立.詳解:(1)因為f′(x)=-a,所以k=f′(1)=1-a,又因為f(1)=-a-b,所以切線方程為y+a+b=(1-a)(x-1),因為過點(2,0),所以a+b=1-a,即2a+b=1.(2)當b=0時,f(x)=lnx-ax,所以f′(x)=-a=.10若a≤0,則f′(x)>0,所以f(x)在(,+∞)上遞增,所以f(x)>f()=-1-,因為函數y=f(x)在(,+∞)上沒有零點,所以-1-≥0,即a≤-e;20若a>0,由f′(x)=0,得x=.①當≤時,即a≥e時,f′(x)<0,f(x)在(,+∞)上遞減,所以f(x)<f()=-1-<0,符合題意,所以a≥e;②當>時,即0<a<e時,若<x<,f′(x)<0,f(x)在(,)上遞增;若x>,f′(x)>0,f(x)在(,+∞)上遞減,所以f(x)在x=處取得極大值,即為最大值,要使函數y=f(x)在(,+∞)上沒有零點,必須滿足f()=ln-1=-lna-1<0,得a>,所以<a<e.綜上所述,實數a的取值范圍是a≤-e或a>.(3)不妨設0<x1<x2,由f(x1)=f(x2),得lnx1-ax1-b=lnx2-ax2-b,因為a>0,所以.又因為,f′(x)在(0,+∞)上遞減,且f′()=0,故要證,只要證,只要證,只要證,只

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論