




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鎮江新區大港中學中考二模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.對于非零的兩個實數、,規定,若,則的值為()A. B. C. D.2.若關于x的不等式組只有5個整數解,則a的取值范圍()A. B. C. D.3.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.4.下列運算不正確的是A.a5+C.2a25.下列四個實數中,比5小的是()A. B. C. D.6.下列運算正確的是()A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a67.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.8.tan30°的值為()A.12 B.32 C.39.如圖,在射線OA,OB上分別截取OA1=OB1,連接A1B1,在B1A1,B1B上分別截取B1A2=B1B2,連接A2B2,…按此規律作下去,若∠A1B1O=α,則∠A10B10O=()A. B. C. D.10.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:a3-12a2+36a=______.12.圖中是兩個全等的正五邊形,則∠α=______.13.若a是方程的根,則=_____.14.用一張扇形紙片圍成一個圓錐的側面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.15.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經過若干次圖形的變化(平移、軸對稱、旋轉)得到的,寫出一種由△ABC得到△DEF的過程:_____.16.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.三、解答題(共8題,共72分)17.(8分)計算:.18.(8分)如圖,在平行四邊形ABCD中,BD為對角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.19.(8分)如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G,GB=GC.(1)求證:四邊形ABCD是矩形;(1)若△GEF的面積為1.①求四邊形BCFE的面積;②四邊形ABCD的面積為.20.(8分)某漁業養殖場,對每天打撈上來的魚,一部分由工人運到集貿市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養殖場共有30名工人,每名工人只能參與打撈與到集貿市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養殖場一天的總銷售收入為y元,求y與x的函數關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.21.(8分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數根x1,x1.求實數k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數k的值.22.(10分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質完全相同的小球,其中甲袋中的小球上分別標有數字1,1,2;乙袋中的小球上分別標有數字﹣1,﹣2,1.現從甲袋中任意摸出一個小球,記其標有的數字為x,再從乙袋中任意摸出一個小球,記其標有的數字為y,以此確定點M的坐標(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;求點M(x,y)在函數y=﹣2x23.(12分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.24.我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:因為規定,所以,所以x=,經檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.2、A【解析】
分別解兩個不等式得到得x<20和x>3-2a,由于不等式組只有5個整數解,則不等式組的解集為3-2a<x<20,且整數解為15、16、17、18、19,得到14≤3-2a<15,然后再解關于a的不等式組即可.【詳解】解①得x<20
解②得x>3-2a,
∵不等式組只有5個整數解,
∴不等式組的解集為3-2a<x<20,
∴14≤3-2a<15,故選:A【點睛】本題主要考查對不等式的性質,解一元一次不等式,一元一次不等式組的整數解等知識點的理解和掌握,能求出不等式14≤3-2a<15是解此題的關鍵.3、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.4、B【解析】(-2a5、A【解析】
首先確定無理數的取值范圍,然后再確定是實數的大小,進而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.【點睛】考查無理數的估算,掌握無理數估算的方法是解題的關鍵.通常使用夾逼法.6、D【解析】
根據完全平方公式、合并同類項、同底數冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數冪的除法、積的乘方以及合并同類項,解決本題的關鍵是熟記公式和法則.7、A【解析】
由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【詳解】解:大正方形的面積-小正方形的面積=,
矩形的面積=,
故,
故選:A.【點睛】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.8、D【解析】
直接利用特殊角的三角函數值求解即可.【詳解】tan30°=33,故選:D【點睛】本題考查特殊角的三角函數的值的求法,熟記特殊的三角函數值是解題的關鍵.9、B【解析】
根據等腰三角形兩底角相等用α表示出∠A2B2O,依此類推即可得到結論.【詳解】∵B1A2=B1B2,∠A1B1O=α,∴∠A2B2O=α,同理∠A3B3O=×α=α,∠A4B4O=α,∴∠AnBnO=α,∴∠A10B10O=,故選B.【點睛】本題考查了等腰三角形兩底角相等的性質,圖形的變化規律,依次求出相鄰的兩個角的差,得到分母成2的指數次冪變化,分子不變的規律是解題的關鍵.10、D【解析】
根據合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(a-6)2【解析】
原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解題的關鍵.12、108°【解析】
先求出正五邊形各個內角的度數,再求出∠BCD和∠BDC的度數,求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內角的度數是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內角和外角,能求出各個角的度數是解此題的關鍵.13、1【解析】
利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,
∴3a2-a-2=0,
∴3a2-a=2,
∴==5-2×2=1.
故答案為:1.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.14、1【解析】
設這個圓錐的母線長為xcm,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、平移,軸對稱【解析】分析:根據平移的性質和軸對稱的性質即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉,平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大小.16、50度【解析】
由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數,即可求得∠ACB'的度數,繼而求得∠B'CB的度數.【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.三、解答題(共8題,共72分)17、【解析】
根據絕對值的性質、零指數冪的性質、特殊角的三角函數值、負整數指數冪的性質、二次根式的性質及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.18、見解析【解析】
易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點睛】此題主要考查平行四邊形的性質與全等三角形的判定與性質,解題的關鍵是熟知平行四邊形的性質定理.19、(1)證明見解析;(1)①16;②14;【解析】
(1)根據平行四邊形的性質得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根據全等三角形的性質得到∠A=∠D,根據平行線的性質得到∠A+∠D=180°,由矩形的判定定理即可得到結論;(1)①根據相似三角形的性質得到,求得△GBC的面積為18,于是得到四邊形BCFE的面積為16;②根據四邊形BCFE的面積為16,列方程得到BC?AB=14,即可得到結論.【詳解】(1)證明:∵GB=GC,∴∠GBC=∠GCB,在平行四邊形ABCD中,∵AD∥BC,AB=DC,AB∥CD,∴GB-GE=GC-GF,∴BE=CF,在△ABE與△DCF中,,∴△ABE≌△DCF,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四邊形ABCD是矩形;(1)①∵EF∥BC,∴△GFE∽△GBC,∵EF=AD,∴EF=BC,∴,∵△GEF的面積為1,∴△GBC的面積為18,∴四邊形BCFE的面積為16,;②∵四邊形BCFE的面積為16,∴(EF+BC)?AB=×BC?AB=16,∴BC?AB=14,∴四邊形ABCD的面積為14,故答案為:14.【點睛】本題考查了相似三角形的判定和性質,矩形的判定和性質,圖形面積的計算,全等三角形的判定和性質,證得△GFE∽△GBC是解題的關鍵.20、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【解析】
(1)根據題意可以得到y關于x的函數解析式,本題得以解決;(2)根據題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的函數關系式為y=﹣50x+10500;(2)由題意可得,,得x,∵x是整數,y=﹣50x+10500,∴當x=12時,y取得最大值,此時,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打撈,18人銷售可使銷售利潤最大,最大銷售利潤為9900元.【點睛】本題考查一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用函數和不等式的性質解答.21、(2)k≤;(2)-2.【解析】試題分析:(2)根據方程的系數結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數k的取值范圍;(2)由根與系數的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數k的值為﹣2.考點:一元二次方程根與系數的關系,根的判別式.22、(1)樹狀圖見解析,則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結果;(2)由點M(x,y)在函數y=﹣2x試題解析:(1)樹狀圖如下圖:則點M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中美術結業考試題目及答案
- 2025年信息系統項目管理考試題及答案
- 四川瀘州科一試題及答案
- java軟件研發面試題及答案
- 股票投資策略與實戰試題
- 電子競技賽事組織作業指導書
- 機電工程實操練習試題及答案
- 項目資源優化配置策略試題及答案
- 西方政治考試的技能提升路徑試題及答案
- 機電工程考試試題及答案解析分享
- 有限空間作業氣體檢測記錄表
- 部編版語文六年級下冊第五單元教材解讀大單元集體備課
- 乒乓球的起源與發展
- 服裝表演音樂游戲課程設計
- 理工英語3-01-國開機考參考資料
- 頭顱常見病影像
- 漫畫解讀非煤地采礦山重大事故隱患判定標準
- 2024年建筑業10項新技術
- 《客艙安全與應急處置》-課件:顛簸的原因及種類
- 《養老護理員》-課件:老年人衛生、環境、食品安全防護知識
- 健康體檢科(中心)規章制度匯編
評論
0/150
提交評論