2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷(含答案)_第1頁
2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷(含答案)_第2頁
2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷(含答案)_第3頁
2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷(含答案)_第4頁
2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷(含答案)_第5頁
已閱讀5頁,還剩5頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第=page11頁,共=sectionpages11頁2024-2025學年廣東省實驗中學高一下學期期中考試數學試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.設z=1+4i(i為虛數單位),則iz+2zA.3 B.3i C.4 D.2.下列各組向量中,能作為基底的是(

)A.e1=(0,0),e2=(1,1) B.e1=(1,2),e2=(?2,1)

C.3.已知a=e0.1,b=ln13,c=sinA.a>b>c B.a>c4.已知sinα?cosα=15A.1225 B.?1225 C.245.底面直徑和母線長均為2的圓錐的體積為(

)A.33π B.π C.26.在?ABC中,a,b,c分別是內角A,B,C的對邊,若S?ABC=34a2+b2?cA.有一個角是30°的等腰三角形 B.等腰直角三角形

C.有一個角是30°的直角三角形 D.等邊三角形7.如圖,在長方體ABCD?A1B1C1D1中,AB=AD=2,?AA1A.2+13 B.11+28.聲音是由物體振動產生的聲波.我們聽到的每個音都是由純音合成的,純音的數學模型是函數y=Asinωt.音有四要素:音調,響度,音長和音色,它們都與函數y=Asinωt中的參數有關,比如:響度與振幅有關,振幅越大響度越大,振幅越小響度越小;音調與頻率有關,頻率低的聲音低沉,頻率高的聲音尖利.像我們平時聽到聲音不只是一個音在響,而是許多音的結合,稱為復合音.我們聽到的聲音函數是f(x)=sinx+1A.函數f(x)=sinx+12sin2x+13sin3x+14sin4x+?+1100sin100x具有奇偶性

B.二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。9.下列命題正確的是(

)A.一個棱柱至少有六個面 B.棱臺的各側棱延長后交于一點

C.正棱錐的側面是全等的等腰三角形 D.圓錐過軸的截面是一個等腰三角形10.設z,z1,z2均為復數,則下列命題中正確的是(

)A.若復數z1=z2,則z?z1=z?z2 B.若|z|=1,則z+i的最大值為211.定義:a,b兩個向量的叉乘a×bA.若a×b=0,則a→/\!/b→

B.λa×b=(λa)×三、填空題:本題共3小題,每小題5分,共15分。12.已知向量a=(?2,3?λ),b=(1,λ),若a//b,則b13.如圖,矩形O′A直觀圖,其中O′A′=3,14.已知等腰?ABC中,AB=AC=1,點D滿足AD⊥CD,且BC=2AD,則BD的最小值為

.四、解答題:本題共5小題,共77分。解答應寫出文字說明,證明過程或演算步驟。15.(本小題13分)已知函數y=Asin(1)求這個函數的解析式;(2)求函數在?π,016.(本小題15分某景區為拓展旅游業務,擬建一個觀景臺P(如圖所示),其中AB,AC為兩條公路,∠BAC=120°,M,N為公路上的兩個景點,測得AM=2km,AN=1km,為了獲得最佳觀景效果,要求P對M,N的視角∠MPN=60°.現需要從觀景臺P到M,N造兩條觀光路線PM,PN(1)求M,N的距離;(2)設∠MNP=α,記f(α)=PM+PN,求f(α)的最大值.17.(本小題15分)如圖,在?ABC中,D是線段BC上的點,且DC=2BD,O是線段AD的中點延長BO交AC于E(1)求λ+μ的值;(2)若?ABC為邊長等于2的正三角形,求OE?18.(本小題17分在?ABC中,角A,B,C所對的邊分別為a,b,c,且a=2b

(1)求B;(2)已知D為邊AB上的一點,且∠ACD=(ⅰ)若BC=23,BD=1,求(ⅱ)求BDAD的取值范圍.19.(本小題17分)“費馬點”是由十七世紀法國數學家費馬提出并征解的一個問題.該問題是:“在一個三角形內求作一點,使其與此三角形的三個頂點的距離之和最小.”意大利數學家托里拆利給出了解答,當?ABC的三個內角均小于120°時,使得∠AOB=∠BOC=∠COA=120°的點O即為費馬點;當?ABC有一個內角大于或等于120°時,最大內角的頂點為費馬點.試用以上知識解決下面問題:已知a,b,c分別是?ABC三個內角A(1)求A;(2)若bc=6,求PA?(3)若PA=xPB+yPC,求參考答案1.A

2.B

3.B

4.C

5.A

6.D

7.C

8.C

9.BCD

10.AB

11.ACD

12.1013.614.1415.解:(1)由函數的部分圖象知,最大值為2,最小值為?2,所以A=2.又因為T4=π6?因為函數的圖象經過點π6,2,所以又因為0<φ<所以函數的解析式為y=2sin(2)令?π2+2k所以f(x)在?π,0上的單調遞增區間為?π,?令2x+π6=k所以f(x)在?π,0上的零點為?7

16.解:(1)在?AMN中,AM=2,AN=1由余弦定理得,M=4+1?2×所以MN=7,即M,N的距離為(2)在?PMN中,∠MNP=α,∠P=60由正弦定理得,PMsin所以PM=2PN=2所以f(α)=PM+PN==2當α=π3時,sinα+π6

17.解:(1)因為O為AD的中點,DC=2BO==?又BO=λAB(2)法一,設AC=tAE,因為O為AD的中點,∴=∵B,O,E三點共線,所以13+故OE因為?ABC為邊長為2故OE==(法二)設ACOE=?又由(1)知BO=?23BO與OE為非零的共線向量,所以1t?∴因為?ABC為邊長為2故OE==1

18.解:(1)由題意知a=2bsin又由正弦定理得asinA=又A+B+C=π,所以A=π?B?C所以cosB因為C∈0,π,所以sin

又因為B∈0,π(2)(ⅰ)因為BC=2根據余弦定理得CD2=B因為∠BDC=π2在?BDC中,由正弦定理知,BCsin∠BDC=CD進而sinA=1?(ⅱ)因為B=π6,∠在?BCD中,由正弦定理得BDsin∠BCD又在?ACD中,AD=所以BDAD因為∠BCD>0,所以所以BDAD的取值范圍是0,

19.解:(1)法一:因為cos2C+2所以1?2sin即sin2整理得:sin2所以由正弦定理可得a2=b法二:因為cos2C+2sin(A+B)所以2sin所以sin(A?B)=sin(A+B)因為sinB>0,所以cos(2)由(1)可得,A=90°,所以?ABC三個內角A,B,C都小于則由費馬點的定義可知:∠APB設PA=x,PB=y,得12xy?所以PA?(3)由費馬點的定義可知:∠APB設|PB|=m,|P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論