




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省淮安市_重點中學畢業升學考試模擬卷數學卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點,將△ADE沿直線DE折疊,點A落在點A′處,且點A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.42.在平面直角坐標系中,點P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式屬于最簡二次根式的有()A. B. C. D.4.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a25.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形6.如圖,函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)7.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE8.6的絕對值是()A.6 B.﹣6 C. D.9.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個10.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數為()A.90° B.60° C.45° D.30°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.12.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.13.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.14.某市對九年級學生進行“綜合素質”評價,評價結果分為A,B,C,D,E五個等級.現隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為_____人.15.如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AC與BD相交于點E,AC=BC,DE=3,AD=5,則⊙O的半徑為___________.16.有一個正六面體,六個面上分別寫有1~6這6個整數,投擲這個正六面體一次,向上一面的數字是2的倍數或3的倍數的概率是____.17.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.三、解答題(共7小題,滿分69分)18.(10分)某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?19.(5分)如圖,一次函數y1=kx+b的圖象與反比例函數y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數與反比例函數的解析式;求△OAB的面積.20.(8分)學了統計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據采集的數據繪制的兩幅不完整的統計圖,請根據圖中提供的信息解答以下問題:(1)補全條形統計圖,并計算出“騎車”部分所對應的圓心角的度數.(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)21.(10分)如圖,某校數學興趣小組要測量大樓AB的高度,他們在點C處測得樓頂B的仰角為32°,再往大樓AB方向前進至點D處測得樓頂B的仰角為48°,CD=96m,其中點A、D、C在同一直線上.求AD的長和大樓AB的高度(結果精確到2m)參考數據:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.7322.(10分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.23.(12分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點,且,過點O作OE⊥AC于點E⊙O的切線AF交OE的延長線于點F,弦AC、BD的延長線交于點G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.24.(14分)某經銷商經銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
由題意得到DA′=DA,EA′=EA,經分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點睛】本題考查了等邊三角形的性質以及折疊的問題,折疊問題的實質是“軸對稱”,解題關鍵是找出經軸對稱變換所得的等量關系.2、A【解析】
分點P的橫坐標是正數和負數兩種情況討論求解.【詳解】①m-3>0,即m>3時,2-m<0,所以,點P(m-3,2-m)在第四象限;②m-3<0,即m<3時,2-m有可能大于0,也有可能小于0,點P(m-3,2-m)可以在第二或三象限,綜上所述,點P不可能在第一象限.故選A.【點睛】本題考查了各象限內點的坐標的符號特征,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【解析】
先根據二次根式的性質化簡,再根據最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.4、C【解析】
根據多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則.5、C【解析】分析:根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.6、D【解析】
過點C作CD⊥x軸與D,如圖,先利用一次函數圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數的基本概念。角角邊定理、全等三角形的性質以及一次函數的應用,熟練掌握相關知識點是解答的關鍵.7、C【解析】
根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.8、A【解析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.9、D【解析】試題分析:根據等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當底時,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.10、C【解析】試題分析:根據勾股定理即可得到AB,BC,AC的長度,進行判斷即可.試題解析:連接AC,如圖:根據勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點:勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
要求絲線的長,需將圓柱的側面展開,進而根據“兩點之間線段最短”得出結果,在求線段長時,根據勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側面展開成矩形,“化曲面為平面”是解題的關鍵.12、110°.【解析】
解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.13、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.14、16000【解析】
用畢業生總人數乘以“綜合素質”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統計圖的應用,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.15、【解析】
如圖,作輔助線CF;證明CF⊥AB(垂徑定理的推論);證明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的長,即可解決問題.【詳解】如圖,連接CO并延長,交AB于點F;∵AC=BC,∴CF⊥AB(垂徑定理的推論);∵BD是⊙O的直徑,∴AD⊥AB;設⊙O的半徑為r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案為.【點睛】該題主要考查了相似三角形的判定及其性質、垂徑定理的推論等幾何知識點的應用問題;解題的關鍵是作輔助線,構造相似三角形,靈活運用有關定來分析、判斷.16、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數字是2的倍數或3的倍數的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.17、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.三、解答題(共7小題,滿分69分)18、(1)111,51;(2)11.【解析】
(1)設乙工程隊每天能完成綠化的面積是x(m2),根據在獨立完成面積為411m2區域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設應安排甲隊工作y天,根據這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設乙工程隊每天能完成綠化的面積是x(m2),根據題意得:解得:x=51,經檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設應安排甲隊工作y天,根據題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應安排甲隊工作11天.19、(1)反比例函數的解析式為y=,一次函數的解析式為y=﹣x+1.(2)2.【解析】
(1)根據反比例函數y2=的圖象過點A(2,3),利用待定系數法求出m,進而得出B點坐標,然后利用待定系數法求出一次函數解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數法求反比例函數、一次函數解析式以及求三角形面積等知識,根據已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.20、(1)補全條形統計圖見解析;“騎車”部分所對應的圓心角的度數為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】
(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數減乘車的和騎車的人數就是步行的人數,根據數據補全直方圖即可;要求扇形的度數就要先求出騎車的占的百分比,然后再求度數;(2)列出從這4人中選兩人的所有等可能結果數,2人都是“喜歡乘車”的學生的情況有3種,然后根據概率公式即可求得.【詳解】(1)被調查的總人數為25÷50%=50人;則步行的人數為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、AD的長約為225m,大樓AB的高約為226m【解析】
首先設大樓AB的高度為xm,在Rt△ABC中利用正切函數的定義可求得,然后根據∠ADB的正切表示出AD的長,又由CD=96m,可得方程,解此方程即可求得答案.【詳解】解:設大樓AB的高度為xm,
在Rt△ABC中,∵∠C=32°,∠BAC=92°,
∴,
在Rt△ABD中,,
∴,
∵CD=AC-AD,CD=96m,
∴,
解得:x≈226,∴
答:大樓AB的高度約為226m,AD的長約為225m.【點睛】本題考查解直角三角形的應用.要求學生能借助仰角構造直角三角形并解直角三角形,注意數形結合思想與方程思想的應用.22、(1)y=;(2)1;【解析】
(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數的解析式;(2)根據點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數的解析式求得m的值,根據平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點睛】本題為反比例函數的綜合應用,考查的知識點有待定系數法、平行四邊形的性質、中點的求法.在(1)中注意待定系數法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.23、(1)見解析;(2).【解析】
(1)根據圓周角定理得到∠GAB=∠B,根據切線的性質得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據勾股定理求出OG,證明△FAO∽△BOG,根據相似三角形的性質列出比例式,計算即可.【詳解】(1)證明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切線,∴AF⊥AO.∴∠GAB+∠G
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幫別人車輛過戶委托書
- 文秘工作心得體會
- 2024年湘中幼兒師范高等專科學校輔導員考試真題
- 歷史城市文化政策研究基礎知識點歸納
- 2025年產品開發和設計階段試題
- 智慧空間下高校學生未來學習需求分析
- 特種紙企業經營管理方案
- 2025至2030年中國電動遙控雙開門控制器行業投資前景及策略咨詢報告
- 2025至2030年中國琺瑯門行業投資前景及策略咨詢報告
- 小學六年級作文寫事
- 2025年福建三明經開區控股集團有限公司子公司招聘筆試沖刺題(帶答案解析)
- 北京市朝陽區2023-2024學年三年級下學期語文期末考試卷
- 2025年馬克思主義基本原理考試復習試卷及答案
- 理論聯系實際談一談如何傳承發展中華優-秀傳統文化?參考答案三
- 酒店拆除工程協議書
- 2025年遼寧省沈陽市于洪區中考二模道德與法治歷史試題
- 人工智能芯片研究報告
- DB43-T 2066-2021 河湖管理范圍劃定技術規程
- 新疆開放大學2025年春《國家安全教育》形考作業1-4終考作業答案
- 機電維修筆試試題及答案
- 成本預算績效分析實施案例
評論
0/150
提交評論