




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆遼寧省撫順縣中考數(shù)學(xué)四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.y=(m﹣1)x|m|+3m表示一次函數(shù),則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣12.已知關(guān)于x的方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,則常數(shù)c的值為(
)A.﹣1 B.0 C.1 D.33.下列分式是最簡分式的是()A. B. C. D.4.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a105.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢的概率為 D.小明勝的概率和小亮勝的概率一樣6.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.7.的絕對值是()A.8 B.﹣8 C. D.﹣8.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點(diǎn)A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°9.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm10.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°11.如圖,已知點(diǎn)P是雙曲線y=上的一個動點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為()A.y= B.y=﹣ C.y= D.y=﹣12.下列運(yùn)算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點(diǎn)A落到邊BC上的點(diǎn)A′處,折痕分別交邊AB、AC于點(diǎn)E,點(diǎn)F,如果A′F∥AB,那么BE=_____.14.如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個動點(diǎn)(點(diǎn)P與點(diǎn)B,C都不重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)F處;過點(diǎn)P作∠BPF的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是()15.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F(xiàn)為DE中點(diǎn),若點(diǎn)D在直線BC上運(yùn)動,連接CF,則在點(diǎn)D運(yùn)動過程中,線段CF的最小值是_____.16.下面是用棋子擺成的“上”字:如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):第n個“上”字需用_____枚棋子.17.a(chǎn)、b、c是實數(shù),點(diǎn)A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是b____c(用“>”或“<”號填空)18.在平面直角坐標(biāo)系中,若點(diǎn)P(2x+6,5x)在第四象限,則x的取值范圍是_________;三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某養(yǎng)雞場有2500只雞準(zhǔn)備對外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?20.(6分)拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,﹣3).求拋物線的解析式;如圖1,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線y=kx+2(k>0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時,請說明直線QH過定點(diǎn),并求定點(diǎn)坐標(biāo).21.(6分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個動點(diǎn),設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.22.(8分)某商場購進(jìn)一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.求出y與x之間的函數(shù)關(guān)系式;寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?23.(8分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為2cm/s;同時點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動,速度為lcm/s;連接PQ,設(shè)運(yùn)動的時間為t秒(0<t<5),解答下列問題:(1)當(dāng)為t何值時,PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.24.(10分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.25.(10分)在平面直角坐標(biāo)系xOy中,拋物線,與x軸交于點(diǎn)C,點(diǎn)C在點(diǎn)D的左側(cè),與y軸交于點(diǎn)A.求拋物線頂點(diǎn)M的坐標(biāo);若點(diǎn)A的坐標(biāo)為,軸,交拋物線于點(diǎn)B,求點(diǎn)B的坐標(biāo);在的條件下,將拋物線在B,C兩點(diǎn)之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.26.(12分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點(diǎn)E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點(diǎn)O,若AC=AB=3,cosB=,求線段CE的長.27.(12分)某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學(xué)生飲用.某校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調(diào)查的學(xué)生有多少人?(2)補(bǔ)全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是;(4)若該校有600名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】由一次函數(shù)的定義知,|m|=1且m-1≠0,所以m=-1,故選B.2、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,所以?=b2﹣4ac=0,可得關(guān)于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當(dāng)?>0時,一元二次方程有兩個不相等的實數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實數(shù)根;當(dāng)?<0時,一元二次方程沒有實數(shù)根.3、C【解析】解:A.,故本選項錯誤;B.,故本選項錯誤;C.,不能約分,故本選項正確;D.,故本選項錯誤.故選C.點(diǎn)睛:本題主要考查對分式的基本性質(zhì),約分,最簡分式等知識點(diǎn)的理解和掌握,能根據(jù)分式的基本性質(zhì)正確進(jìn)行約分是解答此題的關(guān)鍵.4、B【解析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運(yùn)算性質(zhì)計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點(diǎn)睛】本題綜合考查了整式運(yùn)算的多個考點(diǎn),包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.5、D【解析】
利用概率公式,一一判斷即可解決問題.【詳解】A、錯誤.小明還有可能是平;B、錯誤、小明勝的概率是
,所以輸?shù)母怕适且彩牵籆、錯誤.兩人出相同手勢的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點(diǎn)睛】本題考查列表法、樹狀圖等知識.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】試題解析:從正面看是三個矩形,中間矩形的左右兩邊是虛線,故選B.7、C【解析】
根據(jù)絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當(dāng)a是正有理數(shù)時,a的絕對值是它本身a;②當(dāng)a是負(fù)有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當(dāng)a是零時,a的絕對值是零.【詳解】解:.故選【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關(guān)鍵.8、A【解析】
如圖,過點(diǎn)C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點(diǎn)C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.9、D【解析】
過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點(diǎn)睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.10、C【解析】
如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.11、D【解析】
過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應(yīng)邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設(shè)P(a,b),則有Q(-b,a),由點(diǎn)P在y=上,得到ab=3,可得-ab=-3,則點(diǎn)Q在y=-上.故選D.【點(diǎn)睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,以及坐標(biāo)與圖形變化,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.12、D【解析】
根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點(diǎn)睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關(guān)鍵是熟記公式和法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進(jìn)而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點(diǎn)睛】本題主要考查了折疊問題以及相似三角形的判定與性質(zhì)的運(yùn)用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應(yīng)邊和對應(yīng)角相等.14、C【解析】
先證明△BPE∽△CDP,再根據(jù)相似三角形對應(yīng)邊成比例列出式子變形可得.【詳解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=(0<x<5);故選C.考點(diǎn):1.折疊問題;2.相似三角形的判定和性質(zhì);3.二次函數(shù)的圖象.15、1【解析】試題分析:當(dāng)點(diǎn)A、點(diǎn)C和點(diǎn)F三點(diǎn)共線的時候,線段CF的長度最小,點(diǎn)F在AC的中點(diǎn),則CF=1.16、4n+2【解析】∵第1個有:6=4×1+2;第2個有:10=4×2+2;第3個有:14=4×3+2;……∴第1個有:4n+2;故答案為4n+217、<【解析】試題分析:將二次函數(shù)y=x2-2ax+3轉(zhuǎn)換成y=(x-a)2-a2+3,則它的對稱軸是x=a,拋物線開口向上,所以在對稱軸右邊y隨著x的增大而增大,點(diǎn)A點(diǎn)B均在對稱軸右邊且a+1<a+2,所以b<c.18、﹣3<x<1【解析】
根據(jù)第四象限內(nèi)橫坐標(biāo)為正,縱坐標(biāo)為負(fù)可得出答案.【詳解】∵點(diǎn)P(2x-6,x-5)在第四象限,∴2x+解得-3<x<1.故答案為-3<x<1.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)、一元一次不等式組,解題的關(guān)鍵是知道平面直角坐標(biāo)系中第四象限橫、縱坐標(biāo)的符號.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權(quán)平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為1.8.∵將這組數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是1.5,有,∴這組數(shù)據(jù)的中位數(shù)為1.5.(Ⅲ)∵在所抽取的樣本中,質(zhì)量為的數(shù)量占.∴由樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的數(shù)量約占.有.∴這2500只雞中,質(zhì)量為的約有200只.點(diǎn)睛:此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義以及利用樣本估計總體等知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).20、(1)y=x2﹣2x﹣3;(2);(3)當(dāng)k發(fā)生改變時,直線QH過定點(diǎn),定點(diǎn)坐標(biāo)為(0,﹣2)【解析】
(1)把點(diǎn)A(﹣1,0),C(0,﹣3)代入拋物線表達(dá)式求得b,c,即可得出拋物線的解析式;(2)作CH⊥EF于H,設(shè)N的坐標(biāo)為(1,n),證明Rt△NCH∽△MNF,可得m=n2+3n+1,因為﹣4≤n≤0,即可得出m的取值范圍;(3)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),則點(diǎn)H(﹣x1,y1),設(shè)直線HQ表達(dá)式為y=ax+t,用待定系數(shù)法和韋達(dá)定理可求得a=x2﹣x1,t=﹣2,即可得出直線QH過定點(diǎn)(0,﹣2).【詳解】解:(1)∵拋物線y=x2+bx+c經(jīng)過點(diǎn)A、C,把點(diǎn)A(﹣1,0),C(0,﹣3)代入,得:,解得,∴拋物線的解析式為y=x2﹣2x﹣3;(2)如圖,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴拋物線的頂點(diǎn)坐標(biāo)E(1,﹣4),設(shè)N的坐標(biāo)為(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴當(dāng)時,m最小值為;當(dāng)n=﹣4時,m有最大值,m的最大值=16﹣12+1=1.∴m的取值范圍是.(3)設(shè)點(diǎn)P(x1,y1),Q(x2,y2),∵過點(diǎn)P作x軸平行線交拋物線于點(diǎn)H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,設(shè)直線HQ表達(dá)式為y=ax+t,將點(diǎn)Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直線HQ表達(dá)式為y=(x2﹣x1)x﹣2,∴當(dāng)k發(fā)生改變時,直線QH過定點(diǎn),定點(diǎn)坐標(biāo)為(0,﹣2).【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了配方法求二次函數(shù)的最值、待定系數(shù)法求一次函數(shù)的解析式、(2)問通過相似三角形建立m與n的函數(shù)關(guān)系式是解題的關(guān)鍵.21、(1)y=x2-4x+3.(2)當(dāng)m=時,四邊形AOPE面積最大,最大值為.(3)P點(diǎn)的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點(diǎn)D的坐標(biāo),利用交點(diǎn)式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點(diǎn)G的坐標(biāo),表示PG的長,根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點(diǎn)P的坐標(biāo);同理可得其他圖形中點(diǎn)P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個交點(diǎn)為D,由對稱性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點(diǎn)G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點(diǎn)P的坐標(biāo)是:(,)或(,)或(,)或(,).點(diǎn)睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問時需要運(yùn)用配方法,解第(3)問時需要運(yùn)用分類討論思想和方程的思想解決問題.22、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】
(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得:,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當(dāng)x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用:利用二次函數(shù)解決利潤問題,先利用利潤=每件的利潤乘以銷售量構(gòu)建二次函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求二次函數(shù)的最值,一定要注意自變量x的取值范圍.23、(1)當(dāng)t=時,PQ∥BC;(2)﹣(t﹣)2+,當(dāng)t=時,y有最大值為;(3)存在,當(dāng)t=時,四邊形PQP′C為菱形【解析】
(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當(dāng)t=時,PQ∥BC.(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當(dāng)t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點(diǎn)O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當(dāng)t=時,四邊形PQP′C為菱形.【點(diǎn)睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會理由參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.24、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設(shè)PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 時尚購物中心物業(yè)租賃與經(jīng)營管理合同
- 拖欠培訓(xùn)費(fèi)車輛使用權(quán)抵扣協(xié)議書
- 休閑農(nóng)業(yè)園區(qū)場地使用權(quán)及經(jīng)營權(quán)轉(zhuǎn)讓合同
- 企業(yè)知識產(chǎn)權(quán)保護(hù)與維權(quán)合同
- 跨境車輛租賃擔(dān)保與運(yùn)輸合同
- 桉樹砍伐承包與林業(yè)生態(tài)修復(fù)項目協(xié)議
- 礦業(yè)權(quán)轉(zhuǎn)讓與安全生產(chǎn)監(jiān)管協(xié)議
- 文化創(chuàng)意園區(qū)場地租賃及文創(chuàng)產(chǎn)品開發(fā)合同
- 工業(yè)園區(qū)拆遷補(bǔ)償安置協(xié)議
- 海南軟件職業(yè)技術(shù)學(xué)院《地理信息系統(tǒng)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 《土木工程制圖》課程題庫試題及答案
- (完整版)三級教育試卷及答案
- 1.1時代為我搭舞臺(課件)-【中職專用】中職思想政治《心理健康與職業(yè)生涯》(高教版2023·基礎(chǔ)模塊)
- 24春國家開放大學(xué)《農(nóng)業(yè)推廣》調(diào)查報告參考答案
- 娛樂賬號運(yùn)營規(guī)劃方案
- 中班語言故事課件《好心的小蛇》
- 工業(yè)園區(qū)擴(kuò)區(qū)可行性方案
- 人教版七年級初一生物上冊導(dǎo)學(xué)案(全冊)
- 精神科護(hù)理技能課件出走行為的防范與護(hù)理
- 倉庫打包發(fā)貨管理制度
- 微電子科學(xué)與工程專業(yè)職業(yè)生涯規(guī)劃書
評論
0/150
提交評論