




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省平涼市鐵路中學八下數學期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F,若四邊形DCFE的周長為18cm,AC的長6cm,則AD的長為()A.13cm B.12cm C.5cm D.8cm2.如圖,在中,,垂足為,,,則的長為()A. B. C. D.3.如圖,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D,若AC=6,BC=8,則CD等于(
)A.1 B.2 C.3 D.4.84.下列四個圓形圖案中,分別以它們所在圓的圓心為旋轉中心,順時針旋轉120°后,能與原圖形完全重合的是()A. B. C. D.5.一個三角形的三邊分別是3、4、5,則它的面積是()A.6 B.12 C.7.5 D.106.等邊△ABC的邊長為6,點O是三邊垂直平分線的交點,∠FOG=120°,∠FOG的兩邊OF,OG分別交AB,BC與點D,E,∠FOG繞點O順時針旋轉時,下列四個結論正確的是()①OD=OE;②;③;④△BDE的周長最小值為9.A.1個 B.2個 C.3個 D.4個7.下列各圖象中,()表示y是x的一次函數.A. B.C. D.8.已知一組數據:9,8,8,6,9,5,7,則這組數據的中位數是()A.6B.7C.8D.99.如圖,在菱形ABCD中,AC與BD相交于點O,AC=6,BD=8,則菱形邊長AB等于()A.10 B. C.5 D.610.把一張正方形紙片按如圖所示的方法對折兩次后剪去兩個角,那么打開以后的形狀是()A.六邊形 B.八邊形 C.十二邊形 D.十六邊形11.一個n邊形從一個頂點出發可以畫4條對角線,則它的內角和為(
)A.360°
B.540°
C.720°
D.900°12.如圖,在四邊形ABCD中,∠A=90°,AB=3,,點M、N分別為線段BC、AB上的動點,點E、F分別為DM、MN的中點,則EF長度的最大值為()A.2 B.3 C.4 D.二、填空題(每題4分,共24分)13.甲、乙兩名同學的5次射擊訓練成績(單位:環)如下表.甲78988乙610978比較甲、乙這5次射擊成績的方差S甲1,S乙1,結果為:S甲1_____S乙1.(選填“>”“=”或“<“)14.直角三角形的兩條直角邊長分別為、,則這個直角三角形的斜邊長為________cm.15.如圖為某班35名學生投籃成績的條形圖,其中上面部分數據破損導致數據不完全,已知此班學生投籃成績的中位數是5,下列選項正確的是_______.①3球以下(含3球)的人數;②4球以下(含4球)的人數;③5球以下(含5球)的人數;④6球以下(含6球)的人數.16.若分式的值為正數,則x的取值范圍_____.17.a與5的和的3倍用代數式表示是________.18.(2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠ACB=90°,D是AB上一點,BD=BC,過點D作AB的垂線交AC于點E,連接CD,交BE于點F.求證:BE垂直平分CD.20.(8分)已知:如圖,在□ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,過點F作FG⊥BF交BC的延長線于點G.(1)求證:四邊形ABEF是菱形;(2)如果AB=2,∠BAD=60°,求FG的長.21.(8分)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)將圖①中的△A1B1C順時針旋轉45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;(2)在圖②中,若AP1=2,則CQ等于多少?22.(10分)已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長線于點E,CE=AC.(1)求證:四邊形ABCD是矩形;(2)若AB=4,AD=3,求四邊形BCED的周長.23.(10分)如圖①,已知正方形ABCD的邊長為1,點P是AD邊上的一個動點,點A關于直線BP的對稱點是點Q,連接PQ、DQ、CQ、BQ,設AP=x.(1)BQ+DQ的最小值是_______,此時x的值是_______;(2)如圖②,若PQ的延長線交CD邊于點E,并且∠CQD=90°.①求證:點E是CD的中點;②求x的值.(3)若點P是射線AD上的一個動點,請直接寫出當△CDQ為等腰三角形時x的值.24.(10分)如圖,在中,過點作,交于點,交于點,過點作,交于點,交于點.(1)求證:四邊形是平行四邊形;(2)已知,求的長.25.(12分)如圖1,點是正方形邊上任意一點,以為邊作正方形,連接,點是線段中點,射線與交于點,連接.(1)請直接寫出和的數量關系和位置關系.(2)把圖1中的正方形繞點順時針旋轉,此時點恰好落在線段上,如圖2,其他條件不變,(1)中的結論是否成立,請說明理由.(3)把圖1中的正方形繞點順時針旋轉,此時點、恰好分別落在線段、上,連接,如圖3,其他條件不變,若,,直接寫出的長度.26.如圖,四邊形ABCD是平行四邊形,EB⊥BC于B,ED⊥CD于D,BE、DE相交于點E,若∠E=62o,求∠A的度數.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
由三角形中位線定理推知ED∥FC,2DE=BC,然后結合已知條件“EF∥DC”,利用兩組對邊相互平行得到四邊形DCFE為平行四邊形,根據在直角三角形中,斜邊上的中線等于斜邊的一半得到AB=2DC,即可得出四邊形DCFE的周長=AB+BC,故BC=18-AB,然后根據勾股定理即可求得.【詳解】∵D、E分別是AB、AC的中點,F是BC延長線上的一點,∴ED是Rt△ABC的中位線,∴ED∥FC.BC=2DE,又EF∥DC,∴四邊形CDEF是平行四邊形;∴DC=EF,∵DC是Rt△ABC斜邊AB上的中線,∴AB=2DC,∴四邊形DCFE的周長=AB+BC,∵四邊形DCFE的周長為18cm,AC的長6cm,∴BC=18﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(18﹣AB)2+62,解得:AB=10cm,∴AD=5cm,故選C.【點睛】本題考查了三角形的中位線定理,直角三角形斜邊中線的性質,平行四邊形的判定和性質,勾股定理的應用等,熟練掌握性質定理是解題的關鍵.2、A【解析】
根據題意,可以證得△ACD∽△CBD,進而得到,由已知數據代入即可.【詳解】由題意知,,∴∠ADC=∠BDC=90°,∠A=∠BCD,∴△ACD∽△CBD,∴,即,∵,,∴CD=4,故選:A.【點睛】本題考查了直角三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定和性質是解題的關鍵.3、D【解析】試題分析:根據勾股定理可求得AB=10,然后根據三角形的面積可得,解得CD=4.8.故選:D4、A【解析】試題分析:A、最小旋轉角度==120°;B、最小旋轉角度==90°;C、最小旋轉角度==180°;D、最小旋轉角度==72°;綜上可得:順時針旋轉120°后,能與原圖形完全重合的是A.故選A.考點:旋轉對稱圖形.5、A【解析】
由于32+42=52,易證此三角形是直角三角形,從而易求此三角形的面積.【詳解】∵32+42=52,∴此三角形是直角三角形,∴S△=×3×4=1.故選:A.【點睛】本題考查了勾股定理的逆定理.解題的關鍵是先證明此三角形是直角三角形.6、B【解析】
連接OB、OC,如圖,利用等邊三角形的性質得∠ABO=∠OBC=∠0CB=30°,再證明∠BOD=∠COE,于是可判斷△BOD≌△COE,所以BD=CE,OD=OE,則可對①進行判斷;利用得到四邊形ODBE的面積,則可對進行③判斷;作OH⊥DE,如圖,則DH=EH,計算出=,利用面積隨OE的變化而變化和四邊形ODBE的面積為定值可對②進行判斷;由于△BDE的周長=BC+DE=4+DE=4+OE,根據垂線段最短,當OE⊥BC時,OE最小,△BDE的周長最小,計算出此時OE的長則可對④進行判斷.【詳解】解:連接OB、OC,如圖,∵△ABC為等邊三角形,∴∠ABC=∠ACB=60°,∵點0是△ABC的中心,∴OB=OC,OB、OC分別平分∠ABC和∠ACB,∴∠ABO=∠0BC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中∴△BOD2≌△COE,∴BD=CE,OD=OE,所以①正確;∴,∴四邊形ODBE的面積,所以③錯誤;作OH⊥DE,如圖,則DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,即S△ODE隨OE的變化而變化,而四邊形ODBE的面積為定值,所以②錯誤;∵BD=CE,∴△BDE的周長=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,當OE⊥BC時,OE最小,△BDE的周長最小,此時OE=,.△BDE周長的最小值=6+3=9,所以④正確.故選:B.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的性質和全等三角形的判定與性質.7、A【解析】
根據一次函數的圖象是直線即可解答.【詳解】解:表示是的一次函數的圖象是一條直線,觀察選項,只有A選項符合題意.故選:A.【點睛】本題考查了函數的圖象,一次函數和正比例函數的圖象都是直線.8、C【解析】
根據這組數據是從大到小排列的,找出最中間的數即可.【詳解】解:∵原數據從大到小排列是:9,9,8,8,7,6,5,∴處于最中間的數是8,∴這組數據的中位數是8.故選C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數)即可.9、C【解析】
根據菱形的對角線互相垂直平分求出OA、OB,再利用勾股定理列式進行計算即可得解.【詳解】∵四邊形ABCD是菱形,
∴OA=AC,OB=BD,AC⊥BD,
∵AC=8,BD=6,
∴OA=4,OB=3,
∴AB==1,
即菱形ABCD的邊長是1.
故選:C.【點睛】考查了菱形的對角線互相垂直平分的性質和勾股定理的應用,熟記菱形的對角線的關系(互相垂直平分)是解題的關鍵.10、B【解析】
由平面圖形的折疊及立體圖形的表面展開圖的特點解結合實際操作解題.【詳解】解:此題需動手操作,可以通過折疊再減去4個重合,得出是八邊形.故選:B.【點睛】本題主要考查了與剪紙相關的知識:動手操作的能力是近幾年常考的內容,要掌握熟練.11、D【解析】
根據題意,由多邊形的對角線性質,多邊形內角和定理,分析可得答案.【詳解】解:由多邊形的對角線的條數公式得:n-3=4,得n=7,則其內角和為(n-2)×180°=(7-2)×180°=900°.故選D.【點睛】本題考查了多邊形的性質,從n邊形的一個頂點出發,能引出(n﹣3)條對角線,一共有n(n-3)2條對角線,經過多邊形的一個頂點的所有對角線把多邊形分成(12、A【解析】
連接BD、ND,由勾股定理得可得BD=4,由三角形中位線定理可得EF=DN,當DN最長時,EF長度的最大,即當點N與點B重合時,DN最長,由此即可求得答案.【詳解】連接BD、ND,由勾股定理得,BD==4,∵點E、F分別為DM、MN的中點,∴EF=DN,當DN最長時,EF長度的最大,∴當點N與點B重合時,DN最長,∴EF長度的最大值為BD=2,故選A.【點睛】本題考查了勾股定理,三角形中位線定理,正確分析、熟練掌握和靈活運用相關知識是解題的關鍵.二、填空題(每題4分,共24分)13、<【解析】
首先求出各組數據的平均數,再利用方差公式計算得出答案.【詳解】,,,,則﹤.故答案為:﹤.【點睛】此題主要考查了方差,正確掌握方差計算公式是解題關鍵.14、【解析】
利用勾股定理直接計算可得答案.【詳解】解:由勾股定理得:斜邊故答案為:.【點睛】本題考查的是勾股定理的應用,掌握勾股定理是解題的關鍵.15、①②④【解析】
根據題意和條形統計圖中的數據可以求得各個選項中對應的人數,從而可以解答本題.【詳解】因為共有35人,而中位數應該是第18個數,所以第18個數是5,從圖中看出第四個柱狀圖的范圍在6以上,所以投4個球的有7人.可得:3球以下(含3球)的人數為10人,4球以下(含4球)的人數10+7=17人,6球以下(含6球)的人數35-1=1.故只有5球以下(含5球)的人數無法確定.故答案為①②④【點睛】本題考查的是條形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.同時理解中位數的概念.16、x>1【解析】試題解析:由題意得:>0,∵-6<0,∴1-x<0,∴x>1.17、3(a+5)【解析】根據題意,先求和,再求倍數.解:a與5的和為a+5,a與5的和的3倍用代數式表示是3(a+5).列代數式的關鍵是正確理解文字語言中的關鍵詞,比如該題中的“倍”、“和”等,從而明確其中的運算關系,正確地列出代數式.18、P(5,5)或(4,5)或(8,5)【解析】試題解析:由題意,當△ODP是腰長為4的等腰三角形時,有三種情況:(5)如圖所示,PD=OD=4,點P在點D的左側.過點P作PE⊥x軸于點E,則PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD-DE=4-5=4,∴此時點P坐標為(4,5);(4)如圖所示,OP=OD=4.過點P作PE⊥x軸于點E,則PE=5.在Rt△POE中,由勾股定理得:OE=,∴此時點P坐標為(5,5);(5)如圖所示,PD=OD=4,點P在點D的右側.過點P作PE⊥x軸于點E,則PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD+DE=4+5=8,∴此時點P坐標為(8,5).綜上所述,點P的坐標為:(4,5)或(5,5)或(8,5).考點:5.矩形的性質;4.坐標與圖形性質;5.等腰三角形的性質;5.勾股定理.三、解答題(共78分)19、證明見解析.【解析】試題分析:首先根據互余的等量代換,得出∠EBC=∠EBD,然后根據線段垂直平分線的性質即可證明.試題解析:∵BD=BC,∴∠BCD=∠BDC.∵ED⊥AB,∴∠EDB=90°,∴∠EDB-∠BDC=∠ACB-∠BCD,即∠ECD=∠EDC,即DE=CE,∴點E在CD的垂直平分線上.又∵BD=BC,∴點B在CD的垂直平分線上,∴BE垂直平分CD.點睛:本題考查了全等三角形的判定與性質,等腰三角形“三線合一”的性質,得出∠EBC=∠EBD,是解題的關鍵.20、(1)見解析;(2)【解析】
(1)根據平行四邊形的性質證得AB=BE=AF,得到四邊形ABEF是平行四邊形,再根據鄰邊相等證得結論;(2)根據菱形的性質求得∠BAE=30°,OB=OF=1,再根據FG⊥BF求出∠G==30°,得到BG=4,根據勾股定理求出FG.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠DAE=∠BAE.∴∠AEB=∠BAE.∴AB=BE.同理:AB=AF.∴AF=BE,AF∥BE,∴四邊形ABEF是平行四邊形.又∵AB=BE,∴四邊形ABEF是菱形.(2)∵四邊形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF,AE平分∠BAD,∵AB=2,∠BAD=60°,∴∠BAE=30°,∠FBE=∠ABF=60°,∴OB=OF=1,∴BF=2,又∵FG⊥BF,∴∠BFG==90°,∴∠G==30°,∴BG=4,∴.【點睛】此題考查平行四邊形的性質,菱形的判定與性質,勾股定理,直角三角形30°角所對的直角邊等于斜邊的一半的性質.21、(1)證明見解析;(2)CQ=【解析】分析:(1)利用△A1CB1≌△ACB得到CA1=CA,再根據旋轉的性質得∠B1CB=∠A1CA=45°,則∠BCA1=45°,于是根據“ASA”判斷△CQA1≌△CP1A,所以CP1=CQ;(2)過點P1作P1P⊥AC于點P,如圖②,先在Rt△AP1P中根據含30度的直角三角形三邊的關系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性質得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.詳解:(1)∵△A1CB1≌△ACB,∴CA1=CA.∵圖①中的△A1B1C順時針旋轉45°得圖②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;(2)過點P1作P1P⊥AC于點P,如圖②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.點睛:本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.旋轉有三要素:旋轉中心;旋轉方向;旋轉角度.也考查了等腰直角三角形的性質.22、(1)詳見解析;(2)1.【解析】
(1)根據已知條件推知四邊形BCED是平行四邊形,則對邊相等:CE=BD,依據等量代換得到對角線AC=BD,則平行四邊形ABCD是矩形;
(2)通過勾股定理求得BD的長度,再利用四邊形BCED是平行四邊形列式計算即可得解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AE∥BC.∵CE∥BD,∴四邊形BCED是平行四邊形.∴CE=BD.∵CE=AC,∴AC=BD.∴□ABCD是矩形.(2)解:∵□ABCD是矩形,AB=4,AD=3,∴∠DAB=90°,BC=AD=3,∴.∵四邊形BCED是平行四邊形,∴四邊形BCED的周長為2(BC+BD)=2×(3+5)=1.故答案為(1)詳見解析;(2)1.【點睛】本題考查矩形的判定,平行四邊形的判定與性質,勾股定理,熟記性質是解題的關鍵.23、(1),;(3)①理由詳見解析;②;(3)3﹣或或3+.【解析】試題分析:(1)根據兩點之間,線段最短可知,點Q在線段BD上時BQ+DQ的值最小,是BD的長度,利用勾股定理即可求出;再根據△PDQ是等腰直角三角形求出x的值;(3)①由對稱可知AB=BQ=BC,因此∠BCQ=∠BQC.根據∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,從而EQ=EC.再根據∠CQD=90°可得∠DQE+∠CQE=90°,∠QCE+∠QDE=90°,而∠EQC=∠ECQ,所以∠QDE=∠DQE,從而EQ=ED.易得點E是CD的中點;②在Rt△PDE中,PE=PQ+QE=x+,PD=1﹣x,PQ=x,根據勾股定理即可求出x的值.(3)△CDQ為等腰三角形分兩種情況:①CD為腰,以點C為圓心,以CD的長為半徑畫弧,兩弧交點即為使得△CDQ為等腰三角形的Q點;②CD為底邊時,作CD的垂直平分線,與的交點即為△CDQ為等腰三角形的Q點,則共有3個Q點,那么也共有3個P點,作輔助線,利用直角三角形的性質求之即得.試題解析:(1),.(3)①證明:在正方形ABCD中,AB=BC,∠A=∠BCD=90°.∵Q點為A點關于BP的對稱點,∴AB=QB,∠A=∠PQB=90°,∴QB=BC,∠BQE=∠BCE,∴∠BQC=∠BCQ,∴∠EQC=∠EQB﹣∠CQB=∠ECB﹣∠QCB=∠ECQ,∴EQ=EC.在Rt△QDC中,∵∠QDE=90°﹣∠QCE,∠DQE=90°﹣∠EQC,∴∠QDE=∠DQE,∴EQ=ED,∴CE=EQ=ED,即E為CD的中點.②∵AP=x,AD=1,∴PD=1﹣x,PQ=x,CD=1.在Rt△DQC中,∵E為CD的中點,∴DE=QE=CE=,∴PE=PQ+QE=x+,∴,解得x=.(3)△CDQ為等腰三角形時x的值為3-,,3+.如圖,以點B為圓心,以AB的長為半徑畫弧,以點C為圓心,以CD的長為半徑畫弧,兩弧分別交于Q1,Q3.此時△CDQ1,△CDQ3都為以CD為腰的等腰三角形.作CD的垂直平分線交弧AC于點Q3,此時△CDQ3以CD為底的等腰三形.以下對此Q1,Q3,Q3.分別討論各自的P點,并求AP的值.討論Q?:如圖作輔助線,連接BQ1、CQ1,作PQ1⊥BQ1交AD于P,過點Q1,作EF⊥AD于E,交BC于F.∵△BCQ1為等邊三角形,正方形ABCD邊長為1,∴,.在四邊形ABPQ1中,∵∠ABQ1=30°,∴∠APQ1=150°,∴△PEQ1為含30°的直角三角形,∴PE=.∵AE=,∴x=AP=AE-PE=3-.②討論Q3,如圖作輔助線,連接BQ3,AQ3,過點Q3作PG⊥BQ3,交AD于P,連接BP,過點Q3作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ3=BQ3.∵AB=BQ3,∴△ABQ3為等邊三角形.在四邊形ABQP中,∵∠BAD=∠BQP=90°,∠ABQ?=60°,∴∠APE=130°∴∠EQ3G=∠DPG=180°-130°=60°,∴,∴EG=,∴DG=DE+GE=-1,∴PD=1-,∴x=AP=1-PD=.③對Q3,如圖作輔助線,連接BQ1,CQ1,BQ3,CQ3,過點Q3作BQ3⊥PQ3,交AD的延長線于P,連接BP,過點Q1,作EF⊥AD于E,此時Q3在EF上,不妨記Q3與F重合.∵△BCQ1為等邊三角形,△BCQ3為等邊三角形,BC=1,∴,,∴.在四邊形ABQ3P中∵∠ABF=∠ABC+∠CBQ3=150°,∴∠EPF=30°,∴EP=,EF=.∵AE=,∴x=AP=AE+PE=+3.綜上所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同法實務試題及答案
- 購房者增值服務協議
- 拍賣參與者規則協議
- 電商平臺居間協議
- 2025年度小學科學課程教學計劃
- 加油站電氣火災應急計劃
- 2025-2025學年度第一學期實驗室設備使用規范計劃
- 2025年春季學期人教部編版初中七年級體育教學工作計劃
- 某知名學校插班生入學資格認定及教育服務協議
- 茶園生態修復與資源循環利用承包合同樣本
- 鑄牢中華民族共同體意識學習PPT
- 初中數學北師大八年級上冊勾股定理-勾股定理的復習PPT
- 一例給藥錯誤不良事件匯報
- 三腔二囊管壓迫止血及護理課件
- 電氣控制柜制作工藝設計及規范
- 動力電池和電機電控英語術語匯總
- 普利茲克獎歷屆得主及作品賞析
- 糖尿病中醫護理查房教學內容
- 消防安全培訓記錄表-
- 邏輯判斷推理口訣
- 關于明確公司安全生產相關責任人的通知
評論
0/150
提交評論