




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省杭州市運河鎮(zhèn)亭趾實驗學校中考猜題數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,兩個一次函數圖象的交點坐標為,則關于x,y的方程組的解為()A. B. C. D.2.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.53.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=34.的算術平方根是()A.4 B.±4 C.2 D.±25.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發(fā)布會上,王登峰司長總結前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-46.已知實數a<0,則下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>07.如圖所示的工件,其俯視圖是()A. B. C. D.8.如圖,四邊形ABCD內接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數為()A.45° B.50° C.55° D.60°9.若不等式組2x-1>3x≤a的整數解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤610.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數251021則鞋子尺碼的眾數和中位數分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼11.已知一個多邊形的內角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形12.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設AD=y,BC=x,則y與x所滿足的函數關系式為()A.正比例函數y=kx(k為常數,k≠0,x>0)B.一次函數y=kx+b(k,b為常數,kb≠0,x>0)C.反比例函數y=(k為常數,k≠0,x>0)D.二次函數y=ax2+bx+c(a,b,c為常數,a≠0,x>0)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.廢舊電池對環(huán)境的危害十分巨大,一粒紐扣電池能污染600立方米的水(相當于一個人一生的飲水量).某班有50名學生,如果每名學生一年丟棄一粒紐扣電池,且都沒有被回收,那么被該班學生一年丟棄的紐扣電池能污染的水用科學記數法表示為_____立方米.14.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.15.如圖,在△OAB中,C是AB的中點,反比例函數y=(k>0)在第一象限的圖象經過A,C兩點,若△OAB面積為6,則k的值為_____.16.因式分解______.17.甲、乙、丙3名學生隨機排成一排拍照,其中甲排在中間的概率是_____.18.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數,滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數分布表和頻數分布直方圖(不完整且局部污損,其中“■”表示被污損的數據).請解答下列問題:成績分組頻數頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.20.(6分)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.21.(6分)某公司投入研發(fā)費用80萬元(80萬元只計入第一年成本),成功研發(fā)出一種產品.公司按訂單生產(產量=銷售量),第一年該產品正式投產后,生產成本為6元/件.此產品年銷售量y(萬件)與售價x(元/件)之間滿足函數關系式y(tǒng)=﹣x+1.求這種產品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數關系式;該產品第一年的利潤為20萬元,那么該產品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發(fā),使產品的生產成本降為5元/件.為保持市場占有率,公司規(guī)定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.22.(8分)某汽車制造公司計劃生產A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產方案?(2)該公司按照哪種方案生產汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產甲乙兩種鋼板(兩種都生產),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產方案?(直接寫出答案)23.(8分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?24.(10分)一件上衣,每件原價500元,第一次降價后,銷售甚慢,于是再次進行大幅降價,第二次降價的百分率是第一次降價的百分率的2倍,結果這批上衣以每件240元的價格迅速售出,求兩次降價的百分率各是多少.25.(10分)某公司銷售一種新型節(jié)能電子小產品,現(xiàn)準備從國內和國外兩種銷售方案中選擇一種進行銷售:①若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數關系式為y=-x+150,成本為20元/件,月利潤為W內(元);②若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數,10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,月利潤為W外(元).(1)若只在國內銷售,當x=1000(件)時,y=(元/件);(2)分別求出W內、W外與x間的函數關系式(不必寫x的取值范圍);(3)若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值.26.(12分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.27.(12分)如圖,二次函數的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據任何一個一次函數都可以化為一個二元一次方程,再根據兩個函數交點坐標就是二元一次方程組的解可直接得到答案.【詳解】解:∵直線y1=k1x+b1與y2=k2x+b2的交點坐標為(2,4),∴二元一次方程組的解為故選A.【點睛】本題主要考查了函數解析式與圖象的關系,滿足解析式的點就在函數的圖象上,在函數的圖象上的點,就一定滿足函數解析式.函數圖象交點坐標為兩函數解析式組成的方程組的解.2、C【解析】
根據三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.3、A【解析】
利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).4、C【解析】
先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.5、B【解析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數的整數位數減1.【詳解】解:85000用科學記數法可表示為8.5×104,
故選:B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、B【解析】A、a+3<0是隨機事件,故A錯誤;B、a﹣3<0是必然事件,故B正確;C、3a>0是不可能事件,故C錯誤;D、a3>0是隨機事件,故D錯誤;故選B.點睛:本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件指一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.8、B【解析】
先根據圓內接四邊形的性質求出∠ADC的度數,再由圓周角定理得出∠DCE的度數,根據三角形外角的性質即可得出結論.【詳解】∵四邊形ABCD內接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內接四邊形的性質,圓周角定理.圓內接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.9、C【解析】
首先確定不等式組的解集,利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、D【解析】
眾數是一組數據中出現(xiàn)次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【詳解】數據36出現(xiàn)了10次,次數最多,所以眾數為36,一共有20個數據,位置處于中間的數是:36,36,所以中位數是(36+36)÷2=36.故選D.【點睛】考查中位數與眾數,掌握眾數是一組數據中出現(xiàn)次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數是解題的關鍵.11、D【解析】
根據多邊形的內角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據多邊形的內角和計算公式求多邊形的邊數,解答時要會根據公式進行正確運算、變形和數據處理.12、C【解析】
延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數,即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設k=AB2,得到y(tǒng)=,則y與x滿足的函數關系式為反比例函數y=(k為常數,k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質,切線長定理,直角三角形全等的判定與性質,反比例函數的性質,以及等腰三角形的性質,做此題是注意靈活運用所學知識.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3×1【解析】因為一粒紐扣電池能污染600立方米的水,如果每名學生一年丟棄一粒紐扣電池,那么被該班學生一年丟棄的紐扣電池能污染的水就是:600×50=30000,用科學記數法表示為3×1立方米.
故答案為3×1.14、.【解析】
依據點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.15、4【解析】
分別過點、點作的垂線,垂足分別為點、點,根據是的中點得到為的中位線,然后設,,,根據,得到,最后根據面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.【點睛】本題考查了反比例函數的比例系數的幾何意義及三角形的中位線定理,關鍵是正確作出輔助線,掌握在反比例函數的圖象上任意一點象坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是,且保持不變.16、a(3a+1)【解析】3a2+a=a(3a+1),故答案為a(3a+1).17、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.
根據題意,列出甲、乙、丙三個同學排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,
只有2種甲在中間,所以甲排在中間的概率是=.
故答案為;點睛:本題主要考查了列舉法求概率,用到的知識點為:概率等于所求情況數與總情況數之比,關鍵是列舉出同等可能的所有情況.18、【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:
∵共有12種等可能的結果,兩次都摸到白球的有2種情況,
∴兩次都摸到白球的概率是:=.
故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關鍵是掌握用樹狀圖法求概率.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】
(1)利用50≤x<60的頻數和頻率,根據公式:頻率=頻數÷總數先計算出樣本總人數,再分別計算出a,b,c的值;(2)先計算出競賽分數不低于70分的頻率,根據樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數;(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分數不低于70分的頻率是0.5+0.06+0.04=0.6,根據樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學,情形如樹形圖所示,共有20種情況:抽取兩名同學在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學來自同一組的概率P==【點睛】本題考查了頻數、頻率、總數間關系及用列表法或樹形圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數與總情況數之比.20、(1)證明見解析;(2).【解析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點E作EH⊥BD于點H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點E作EH⊥BD于點H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點睛】此題考查了平行四邊形的判定與性質、等腰三角形的判定與性質以及三角函數等知識.注意掌握輔助線的作法.21、(1)W1=﹣x2+32x﹣2;(2)該產品第一年的售價是16元;(3)該公司第二年的利潤W2至少為18萬元.【解析】
(1)根據總利潤=每件利潤×銷售量﹣投資成本,列出式子即可;(2)構建方程即可解決問題;(3)根據題意求出自變量的取值范圍,再根據二次函數,利用而學會設的性質即可解決問題.【詳解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由題意:20=﹣x2+32x﹣2.解得:x=16,答:該產品第一年的售價是16元.(3)由題意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7時,W2有最小值,最小值=18(萬元),答:該公司第二年的利潤W2至少為18萬元.【點睛】本題考查二次函數的應用、一元二次方程的應用等知識,解題的關鍵是理解題意,學會構建方程或函數解決問題.22、(1)共有三種方案,分別為①A型號16輛時,B型號24輛;②A型號17輛時,B型號23輛;③A型號18輛時,B型號22輛;(2)當時,萬元;(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【解析】
(1)設A型號的轎車為x輛,可根據題意列出不等式組,根據問題的實際意義推出整數值;(2)根據“利潤=售價-成本”列出一次函數的解析式解答;(3)根據(2)中方案設計計算.【詳解】(1)設生產A型號x輛,則B型號(40-x)輛153634x+42(40-x)1552解得,x可以取值16,17,18共有三種方案,分別為A型號16輛時,B型號24輛A型號17輛時,B型號23輛A型號18輛時,B型號22輛(2)設總利潤W萬元則W==w隨x的增大而減小當時,萬元(3)A型號4輛,B型號8輛;A型號10輛,B型號3輛兩種方案【點睛】本題主要考查了一次函數的應用,以及一元一次不等式組的應用,此題是典型的數學建模問題,要先將實際問題轉化為不等式組解應用題.23、1千米/時【解析】
設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【點睛】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數后列出方程是解決此類題目的基本思路.24、40%【解析】
先設第次降價的百分率是x,則第一次降價后的價格為500(1-x)元,第二次降價后的價格為500(1-2x),根據兩次降價后的價格是240元建立方程,求出其解即可.【詳解】第一次降價的百分率為x,則第二次降價的百分率為2x,根據題意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.則第一次降價的百分率為20%,第二次降價的百分率為40%.【點睛】本題考查了一元二次方程解實際問題,讀懂題意,找出題目中的等量關系,列出方程,求出符合題的解即可.25、(1)140;(2)W內=-x2+130x,W外=-x2+(150-a)x;(3)a=1.【解析】試題分析:(1)將x=1000代入函數關系式求得y,;(2)根據等量關系“利潤=銷售額﹣成本”“利潤=銷售額﹣成本﹣附加費”列出函數關系式;(3)對w內函數的函數關系式求得最大值,再求出w外的最大值并令二者相等求得a值.試題解析:(1)x=1000,y=-×1000+150=140;(2)W內=(y-1)x=(-x+150-1)x=-x2+130x.W外=(150-a)x-x2=-x2+(150-a)x;(3)W內=-x2+130x=-(x-6500)2+2,由W外=-x2+(150-a)x得:W外最大值為:(750-5a)2,所以:(750-5a)2=2.解得a=280或a=1.經檢驗,a=280不合題意,舍去,∴a=1.考點:二次函數的應用.26、(1)證明見解析;(2);(3)1.【解析】
(1)連接OM,如圖1,先證明OM∥BC,再根據等腰三角形的性質判斷AE⊥BC,則OM⊥AE,然后根據切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質得到BE=CE=BC=2,再證明△AOM∽△ABE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/GIEHA 041-2022國際健康驛站室內環(huán)境污染治理服務規(guī)范
- 學生主體視角下智慧課堂學習滿意度的影響因素研究
- 青海省共同富裕評價指標體系構建及實證研究
- 游戲教學法在華裔兒童線上初級綜合課中的應用研究-以“微笑中文”教學為例
- 民事訴訟費用負擔規(guī)則研究-以鑒定費、律師費及訴責險費用為對象
- 對稱中心化偏差準則下均勻設計和強正交陣關系研究
- 熱奈特敘事理論視角下《法爾哈德與希琳》漢譯本研究
- 基于2025年工業(yè)互聯(lián)網平臺的霧計算協(xié)同機制與云計算融合報告
- 維亞爾油畫語言平面化探究與我的繪畫實踐
- 2025年基因檢測在生物技術產業(yè)市場應用與市場前景報告
- 【MOOC】老子的人生智慧-東北大學 中國大學慕課MOOC答案
- 高血壓心臟病超聲
- 中南林業(yè)科技大學《Python程序設計實驗》2021-2022學年期末試卷
- 記背手冊04:《鄉(xiāng)土中國》核心知識背誦清單高考語文一輪復習考點幫(天津專用)
- 麻醉科與患者安全溝通制度
- 2024年六年級道德與法治下冊 第三單元 多樣文明 多彩生活 7 多元文化 多樣魅力教案 新人教版
- 污水處理ao工藝
- 2024年重慶市中考數學試題B卷含答案
- 安徽理工大學《高等安全工程》2023-2024學年第一學期期末試卷
- 林業(yè)工程整改方案
- 2024年7月1日實施新版醫(yī)療器械采購、收貨、驗收、貯存、銷售、出庫、運輸和售后服務工作程序
評論
0/150
提交評論