




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省東莞市四海教育集團六校聯考2023-2024學年中考數學對點突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數(m為常數)的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=32.已知是一個單位向量,、是非零向量,那么下列等式正確的是()A. B. C. D.3.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數的中位數和眾數分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個4.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.35.如圖,在矩形ABCD中,AB=,AD=2,以點A為圓心,AD的長為半徑的圓交BC邊于點E,則圖中陰影部分的面積為()A. B. C. D.6.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定8.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.9.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是()A.27 B.36 C.27或36 D.1810.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.12二、填空題(本大題共6個小題,每小題3分,共18分)11.已知兩圓內切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.12.邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_________.13.如圖,直線l1∥l2,則∠1+∠2=____.14.已知甲、乙兩組數據的折線圖如圖,設甲、乙兩組數據的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)15.計算:的值是______________.16.株洲市城區參加2018年初中畢業會考的人數約為10600人,則數10600用科學記數法表示為_____.三、解答題(共8題,共72分)17.(8分)計算:(π﹣3.14)0﹣2﹣|﹣3|.18.(8分)某校想了解學生每周的課外閱讀時間情況,隨機調查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數分別直方圖和扇形統計圖:根據圖中提供的信息,解答下列問題:(1)補全頻數分布直方圖(2)求扇形統計圖中m的值和E組對應的圓心角度數(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數19.(8分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.20.(8分)某校檢測學生跳繩水平,抽樣調查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數是人,補全頻數分布直方圖,扇形圖中m=;(2)本次調查數據中的中位數落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優秀,那么該校4500名學生中“1分鐘跳繩”成績為優秀的大約有多少人?21.(8分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數f的值隨x的增大而增大,直接寫出h的取值范圍.22.(10分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數;②若⊙O的半徑為2,求線段EF的長.23.(12分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.24.某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉”政策的實施,商場決定采取適當的降價措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:∵二次函數(m為常數)的圖象與x軸的一個交點為(1,0),∴.∴.故選B.2、B【解析】
長度不為0的向量叫做非零向量,向量包括長度及方向,而長度等于1個單位長度的向量叫做單位向量,注意單位向量只規定大小沒規定方向,則可分析求解.【詳解】A.由于單位向量只限制長度,不確定方向,故錯誤;B.符合向量的長度及方向,正確;C.得出的是a的方向不是單位向量,故錯誤;D.左邊得出的是a的方向,右邊得出的是b的方向,兩者方向不一定相同,故錯誤.故答案選B.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.3、B【解析】
根據中位數和眾數的定義分別進行解答即可.【詳解】解:把這些數從小到大排列為160,160,170,180,200,最中間的數是170,則中位數是170;160出現了2次,出現的次數最多,則眾數是160;故選B.【點睛】此題考查了中位數和眾數,掌握中位數和眾數的定義是解題的關鍵;中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數;眾數是一組數據中出現次數最多的數.4、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.5、B【解析】
先利用三角函數求出∠BAE=45°,則BE=AB=,∠DAE=45°,然后根據扇形面積公式,利用圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD進行計算即可.【詳解】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.∵AD∥BC,∴∠DAE=∠BEA=45°,∴圖中陰影部分的面積=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故選B.【點睛】本題考查了扇形面積的計算.陰影面積常用的方法:直接用公式法;和差法;割補法.求陰影面積的主要思路是將不規則圖形面積轉化為規則圖形的面積.6、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.7、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.8、A【解析】
觀察所給的幾何體,根據三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.9、B【解析】試題分析:由于等腰三角形的一邊長3為底或為腰不能確定,故應分兩種情況進行討論:(3)當3為腰時,其他兩條邊中必有一個為3,把x=3代入原方程可求出k的值,進而求出方程的另一個根,再根據三角形的三邊關系判斷是否符合題意即可;(3)當3為底時,則其他兩條邊相等,即方程有兩個相等的實數根,由△=0可求出k的值,再求出方程的兩個根進行判斷即可.試題解析:分兩種情況:(3)當其他兩條邊中有一個為3時,將x=3代入原方程,得:33-33×3+k=0解得:k=37將k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能組成三角形,不符合題意舍去;(3)當3為底時,則其他兩邊相等,即△=0,此時:344-4k=0解得:k=3將k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能夠組成三角形,符合題意.故k的值為3.故選B.考點:3.等腰三角形的性質;3.一元二次方程的解.10、C【解析】
設B點的坐標為(a,b),由BD=3AD,得D(,b),根據反比例函數定義求出關鍵點坐標,根據S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數的圖象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數系數k的幾何意義.結合圖形,分析圖形面積關系是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
由兩圓的半徑分別為2和5,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系和兩圓位置關系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關系.解題的關鍵是掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系.12、1a1.【解析】
結合圖形,發現:陰影部分的面積=大正方形的面積的+小正方形的面積-直角三角形的面積.【詳解】陰影部分的面積=大正方形的面積+小正方形的面積-直角三角形的面積=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案為:1a1.【點睛】此題考查了整式的混合運算,關鍵是列出求陰影部分面積的式子.13、30°【解析】
分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質求得答案.【詳解】如圖,分別過A、B作l1的平行線AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案為30°.【點睛】本題主要考查平行線的性質和判定,掌握平行線的性質和判定是解題的關鍵,即①兩直線平行?同位角相等,②兩直線平行?內錯角相等,③兩直線平行?同旁內角互補.14、>【解析】
要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據折線統計圖結合根據平均數的計算公式求出這兩組數據的平均數;接下來根據方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術平均數,折線統計圖,解題的關鍵是熟練的掌握方差,算術平均數,折線統計圖.15、-1【解析】解:=-1.故答案為:-1.16、1.06×104【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:10600=1.06×104,故答案為:1.06×104【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、﹣1.【解析】
本題涉及零指數冪、負指數冪、二次根式化簡和特殊角的三角函數值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=1﹣3+4﹣3,=﹣1.【點睛】本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.18、略;m=40,1.4°;870人.【解析】試題分析:根據A組的人數和比例得出總人數,然后得出D組的人數,補全條形統計圖;根據C組的人數和總人數得出m的值,根據E組的人數求出E的百分比,然后計算圓心角的度數;根據D組合E組的百分數總和,估算出該校的每周的課外閱讀時間不小于6小時的人數.試題解析:(1)補全頻數分布直方圖,如圖所示.(2)∵10÷10%=100∴40÷100=40%∴m=40∵4÷100=4%∴“E”組對應的圓心角度數=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估計該校學生中每周的課外閱讀時間不小于6小時的人數是870人.考點:統計圖.19、(1)見解析;(2)見解析【解析】
(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可.【詳解】解:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等邊三角形.∴菱形的邊長為4,高為.∴菱形的面積為4×=.20、(1)16、84°;(2)C;(3)該校4500名學生中“1分鐘跳繩”成績為優秀的大約有3000(人)【解析】
(1)根據百分比=所長人數÷總人數,圓心角=百分比,計算即可;(2)根據中位數的定義計算即可;(3)用一半估計總體的思考問題即可;【詳解】(1)由題意總人數人,D組人數人;B組的圓心角為;(2)根據A組6人,B組14人,C組19人,D組16人,E組5人可知本次調查數據中的中位數落在C組;(3)該校4500名學生中“1分鐘跳繩”成績為優秀的大約有人.【點睛】本題主要考查了數據的統計,熟練掌握扇形圖圓心角度數求解方法,總體求解方法等相關內容是解決本題的關鍵.21、(1)①當1<x<3或x>5時,函數?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數法求拋物線的解析式,由對稱性求點B的坐標,根據圖象寫出函數?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側,∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側,且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸交拋物線于點C,分兩種情況:①由圖象可知:圖象f在AC段時,函數f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點B的右側時,函數f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當3≤h≤4或h≤0時,函數f的值隨x的增大而增大.考點:待定系數法求二次函數的解析式;二次函數的增減性問題、三角形相似的性質和判定;一元二次方程;一元一次不等式組.22、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據直線與⊙O相切的性質,得OC⊥CD.又因為AD⊥CD,根據同一平面內,垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根據垂徑定理可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邢臺醫學高等專科學校《嵌入式系統》2023-2024學年第二學期期末試卷
- 邢臺應用技術職業學院《習近平總書記關于教育的重要論述》2023-2024學年第一學期期末試卷
- 2025至2031年中國碳素型HDPE單壁螺旋可撓管行業投資前景及策略咨詢研究報告
- 甘肅省蘭州市2024屆中考四模數學試題含解析
- 2024-2025各個班組三級安全培訓考試試題(突破訓練)
- 2024-2025生產經營負責人安全培訓考試試題附答案【滿分必刷】
- 2025安全管理人員安全培訓考試試題及答案完美版
- 2025項目部安全管理人員安全培訓考試試題附參考答案(鞏固)
- 2025公司管理人員安全培訓考試試題答案新版
- 2025廠級安全培訓考試試題附答案【突破訓練】
- 新疆歷史印記課件
- 2024年西安交通大學中國民族鋼琴藝術鑒賞智慧樹知到期末考試答案章節答案(自用更新版)
- 烤腸機投放協議書范本
- 鋼板樁圍堰施工專項方案
- 少先隊輔導員技能大賽考試題庫300題(含答案)
- 2024年山東青島第三十九中學化學自招試卷試題(含答案詳解)
- 誠信與善意的謊言辯論賽(正反方資料)
- 【中考真題】廣西壯族自治區2024年中考語文真題試卷
- 水利工程安全生產措施方案
- 2023年中級審計師考試審計理論與實務真題及答案
- 《埋地塑料排水管道工程技術規程》CJJ143-2010
評論
0/150
提交評論