四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題含解析_第1頁
四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題含解析_第2頁
四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題含解析_第3頁
四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題含解析_第4頁
四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省資陽市雁江區臨豐祥片區重點中學2025屆初三畢業班第一次教學質量檢測試題卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小明從A處出發沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調整到與出發時一致,則方向的調整應是()A.右轉80° B.左轉80° C.右轉100° D.左轉100°2.學校小組名同學的身高(單位:)分別為:,,,,,則這組數據的中位數是().A. B. C. D.3.已知a,b為兩個連續的整數,且a<<b,則a+b的值為()A.7 B.8 C.9 D.104.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,5.在同一坐標系中,反比例函數y=與二次函數y=kx2+k(k≠0)的圖象可能為()A. B.C. D.6.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結論一定正確的是()A. B.C. D.7.關于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數,則k值是()A.﹣1 B.±2 C.2 D.﹣28.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形9.已知反比例函數下列結論正確的是()A.圖像經過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<110.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上.11.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數是()A.32° B.30° C.38° D.58°12.下列四個實數中,比5小的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某籃球架的側面示意圖如圖所示,現測得如下數據:底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側,與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結果保留一位小數,參考數據:sin53°≈,cos53°≈,tan53°≈).14.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數y=的圖象上.若點B在反比例函數y=的圖象上,則k的值為_____.15.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.16.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形17.如圖,在平面直角坐標系中,已知點A(1,1),以點O為旋轉中心,將點A逆時針旋轉到點B的位置,則的長為_____.18.分解因式2x2﹣4x+2的最終結果是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)畫出△ABC關于點B成中心對稱的圖形△A1BC1;以原點O為位似中心,位似比為1:2,在y軸的左側畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.20.(6分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.21.(6分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數解.22.(8分)如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數的圖象于點B,AB=.求反比例函數的解析式;若P(,)、Q(,)是該反比例函數圖象上的兩點,且時,,指出點P、Q各位于哪個象限?并簡要說明理由.23.(8分)九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數圖象如圖所示.(1)求關于的函數解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?24.(10分)已知:如圖,一次函數與反比例函數的圖象有兩個交點和,過點作軸,垂足為點;過點作軸,垂足為點,且,連接.求,,的值;求四邊形的面積.25.(10分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).26.(12分)現有一次函數y=mx+n和二次函數y=mx2+nx+1,其中m≠0,若二次函數y=mx2+nx+1經過點(2,0),(3,1),試分別求出兩個函數的解析式.若一次函數y=mx+n經過點(2,0),且圖象經過第一、三象限.二次函數y=mx2+nx+1經過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數y=x2+x+1也經過A點,已知﹣1<h<1,請求出m的取值范圍.27.(12分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

60°+20°=80°.由北偏西20°轉向北偏東60°,需要向右轉.故選A.2、C【解析】

根據中位數的定義進行解答【詳解】將5名同學的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數據的中位數是152.故選C.本題主要考查中位數,解題的關鍵是熟練掌握中位數的定義:一組數據按從小到大(或從大到小)的順序依次排列,處在中間位置的一個數(或最中間兩個數據的平均數)稱為中位數.3、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續的整數,且,∴a=3,b=4,∴a+b=7,故選A.4、A【解析】

首先根據題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.5、D【解析】

根據k>0,k<0,結合兩個函數的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數y=,在二、四象限,而二次函數y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數y=,在一、三象限,而二次函數y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.本題主要考查二次函數、反比例函數的圖象特點.6、A【解析】

根據平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.7、D【解析】

根據一元二次方程根與系數的關系列出方程求解即可.【詳解】設方程的兩根分別為x1,x1,

∵x1+(k1-4)x+k-1=0的兩實數根互為相反數,

∴x1+x1,=-(k1-4)=0,解得k=±1,

當k=1,方程變為:x1+1=0,△=-4<0,方程沒有實數根,所以k=1舍去;

當k=-1,方程變為:x1-3=0,△=11>0,方程有兩個不相等的實數根;

∴k=-1.

故選D.本題考查的是根與系數的關系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.8、B【解析】

如果兩個多邊形的對應角相等,對應邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應角相等,對應邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應角不一定相等,矩形的邊不一定對應成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.本題考查了相似多邊形的識別.判定兩個圖形相似的依據是:對應邊成比例,對應角相等,兩個條件必須同時具備.9、B【解析】分析:直接利用反比例函數的性質進而分析得出答案.詳解:A.反比例函數y=,圖象經過點(﹣1,﹣1),故此選項錯誤;B.反比例函數y=,圖象在第一、三象限,故此選項正確;C.反比例函數y=,每個象限內,y隨著x的增大而減小,故此選項錯誤;D.反比例函數y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數的性質,正確掌握反比例函數的性質是解題的關鍵.10、B【解析】

先根據平行四邊形的性質得到點的坐標,再代入反比例函數(k≠0)求出其解析式,再根據反比例函數的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(k≠0)的圖象經過點,,反比例函數解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變為,在反比例函數圖象上,故正確;因為反比例函數的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上,正確.故選:B.本題綜合考查了平行四邊形的性質和反比例函數的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.11、A【解析】

根據∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.此題考查了圓周角的性質與等腰三角形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.12、A【解析】

首先確定無理數的取值范圍,然后再確定是實數的大小,進而可得答案.【詳解】解:A、∵5<<6,∴5﹣1<﹣1<6﹣1,∴﹣1<5,故此選項正確;B、∵∴,故此選項錯誤;C、∵6<<7,∴5<﹣1<6,故此選項錯誤;D、∵4<<5,∴,故此選項錯誤;故選A.考查無理數的估算,掌握無理數估算的方法是解題的關鍵.通常使用夾逼法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.1.【解析】

過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.本題考查了相似三角形的性質與應用,解題的關鍵是熟練的掌握相似三角形的性質與應用.14、﹣2【解析】

要求函數的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據條件得到△ACO∽△ODB,得到:=1,然后用待定系數法即可.【詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設點A的坐標是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數y=的圖象上,∴mn=1.∵點B在反比例函數y=的圖象上,∴B點的坐標是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定和性質,利用相似三角形的性質求得點B的坐標(用含n的式子表示)是解題的關鍵.15、【解析】

根據∠A的正弦求出∠A=60°,再根據30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.本題考查了特殊角的三角函數值,熟記30°、45°、60°角的三角函數值是解題的關鍵.16、B【解析】

根據平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.17、.【解析】

由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉中心,將點A逆時針旋轉到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.本題考查坐標與圖形變化——旋轉,弧長公式,熟練掌握旋轉的性質以及弧長公式是解題的關鍵.本題中求出OA=以及∠AOB=45°也是解題的關鍵.18、1(x﹣1)1【解析】

先提取公因式1,再根據完全平方公式進行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1本題考查提公因式法與公式法的綜合運用,難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質得出的坐標進而得出答案;

利用關于原點位似圖形的性質得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).20、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】

(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉化成一元一次方程是解(1)的關鍵,能根據不等式的解集找出不等式組的解集是解(2)的關鍵.21、,1.【解析】

首先化簡(﹣a)÷(1+),然后根據a是不等式﹣<a<的整數解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當a=1時,原式==1.22、(1);(2)P在第二象限,Q在第三象限.【解析】試題分析:(1)求出點B坐標即可解決問題;(2)結論:P在第二象限,Q在第三象限.利用反比例函數的性質即可解決問題;試題解析:解:(1)由題意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函數的解析式為.(2)結論:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函數y在每個象限y隨x的增大而增大,∵P(x1,y1)、Q(x2,y2)是該反比例函數圖象上的兩點,且x1<x2時,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.點睛:此題考查待定系數法、反比例函數的性質、坐標與圖形的變化等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.23、;(2)騎自行車的學生先到達百花公園,先到了10分鐘.【解析】

(1)根據函數圖象中的數據可以求得關于的函數解析式;(2)根據函數圖象中的數據和題意可以分別求得步行學生和騎自行車學生到達百花公園的時間,從而可以解答本題.【詳解】解:(1)設關于的函數解析式是,,得,即關于的函數解析式是;(2)由圖象可知,步行的學生的速度為:千米/分鐘,步行同學到達百花公園的時間為:(分鐘),當時,,得,,答:騎自行車的學生先到達百花公園,先到了10分鐘.本題考查一次函數的應用,解答本題的關鍵是明確題意,利用一次函數的性質解答.24、(1),,.(2)6【解析】

(1)用代入法可求解,用待定系數法求解;(2)延長,交于點,則.根據求解.【詳解】解:(1)∵點在上,∴,∵點在上,且,∴.∵過,兩點,∴,解得,∴,,.(2)如圖,延長,交于點,則.∵軸,軸,∴,,∴,,∴.∴四邊形的面積為6.考核知識點:反比例函數和一次函數的綜合運用.數形結合分析問題是關鍵.25、(1)1;(2).【解析】

(1)先計算乘方、絕對值、負整數指數冪和零指數冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.本題主要考查實數和分式的混合運算,解題的關鍵是掌握絕對值性質、負整數指數冪、零指數冪及分式混合運算順序和運算法則.26、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】

(1)直接將點代入函數解析式,用待定系數法即可求解函數解析式;(2)點(2,1)代入一次函數解析式,得到n=?2m,利用m與n的關系能求出二次函數對稱軸x=1,由一次函數經過一、三象限可得m>1,確定二次函數開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數解析式,再結合對稱抽得h=,將得到的三個關系聯立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論