




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
絕密★本科目考試啟用前2022年普通高等學校招生全國統一考試(北京卷)數學本試卷共5頁,150分.考試時長120分鐘.考生務必將答案答在答題卡上,在試卷上作答無效.考試結束后,將本試卷和答題卡一并交回.第一部分(選擇題共40分)一、選擇題共10小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.1.已知全集,集合,則?∪A=(A. B. C. D.2.若復數z滿足,則()A.1 B.5 C.7 D.253.若直線是圓的一條對稱軸,則()A. B. C.1 D.4己知函數,則對任意實數x,有()A. B.C. D.5已知函數,則()A.在上單調遞減 B.在上單調遞增C.在上單調遞減 D.在上單調遞增6.設是公差不為0的無窮等差數列,則“為遞增數列”是“存在正整數,當時,”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.在北京冬奧會上,國家速滑館“冰絲帶”使用高效環保的二氧化碳跨臨界直冷制冰技術,為實現綠色冬奧作出了貢獻.如圖描述了一定條件下二氧化碳所處的狀態與T和的關系,其中T表示溫度,單位是K;P表示壓強,單位是.下列結論中正確的是()
A.當,時,二氧化碳處于液態B.當,時,二氧化碳處于氣態C.當,時,二氧化碳處于超臨界狀態D.當,時,二氧化碳處于超臨界狀態8.若,則()A.40 B.41 C. D.9.已知正三棱錐的六條棱長均為6,S是及其內部的點構成的集合.設集合,則T表示的區域的面積為()A. B. C. D.10.在中,.P為所在平面內的動點,且,則的取值范圍是()A. B. C. D.第二部分(非選擇題共110分)二、填空題共5小題,每小題5分,共25分.11.函數的定義域是_________.12.已知雙曲線漸近線方程為,則__________.13.若函數的一個零點為,則________;________.14.設函數若存在最小值,則a的一個取值為________;a的最大值為___________.15.己知數列各項均為正數,其前n項和滿足.給出下列四個結論:①的第2項小于3;②為等比數列;③為遞減數列;④中存在小于的項.其中所有正確結論的序號是__________.三、解答題共6小愿,共85分.解答應寫出文字說明,演算步驟或證明過程.16.在中,.(1)求;(2)若,且的面積為,求的周長.17.如圖,在三棱柱中,側面為正方形,平面平面,,M,N分別為,AC的中點.(1)求證:平面;(2)再從條件①、條件②這兩個條件中選擇一個作為已知,求直線AB與平面BMN所成角的正弦值.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個解答計分.18.在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優秀獎.為預測獲得優秀獎的人數及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數據(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:985,9.65,9.20,9.16.假設用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優秀獎的概率;(2)設X是甲、乙、丙在校運動會鉛球比賽中獲得優秀獎的總人數,估計X的數學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結論不要求證明)19.已知橢圓:的一個頂點為,焦距為.(1)求橢圓E的方程;(2)過點作斜率為k的直線與橢圓E交于不同的兩點B,C,直線AB,AC分別與x軸交于點M,N,當時,求k的值.20.已知函數.(1)求曲線在點處的切線方程;(2)設,討論函數在上單調性;(3)證明:對任意的,有.21.已知為有窮整數數列.給定正整數m,若對任意的,在Q中存在,使得,則稱Q為連續可表數列.(1)判斷是否為連續可表數列?是否為連續可表數列?說明理由;(2)若為連續可表數列,求證:k的最小值為4;(3)若為連續可表數列,且,求證:.絕密★本科目考試啟用前2022年普通高等學校招生全國統一考試(北京卷)數學本試卷共5頁,150分.考試時長120分鐘.考生務必將答案答在答題卡上,在試卷上作答無效.考試結束后,將本試卷和答題卡一并交回.第一部分(選擇題共40分)一、選擇題共10小題,每小題4分,共40分.在每小題列出的四個選項中,選出符合題目要求的一項.1.已知全集,集合,則?∪A=(A. B. C. D.【答案】D【解析】【分析】利用補集的定義可得正確的選項.【詳解】由補集定義可知:?∪A={x│-3<x≤-2或1<x<3},,即故選:D.2.若復數z滿足,則()A.1 B.5 C.7 D.25【答案】B【解析】【分析】利用復數四則運算,先求出,再計算復數的模.【詳解】由題意有,故.故選:B.3.若直線是圓的一條對稱軸,則()A. B. C.1 D.【答案】A【解析】【分析】若直線是圓的對稱軸,則直線過圓心,將圓心代入直線計算求解.【詳解】由題可知圓心為,因為直線是圓的對稱軸,所以圓心在直線上,即,解得.故選:A.4.己知函數,則對任意實數x,有()A. B.C. D.【答案】C【解析】【分析】直接代入計算,注意通分不要計算錯誤.【詳解】,故A錯誤,C正確;,不常數,故BD錯誤;故選:C.5.已知函數,則()A.在上單調遞減 B.在上單調遞增C.在上單調遞減 D.在上單調遞增【答案】C【解析】【分析】化簡得出,利用余弦型函數的單調性逐項判斷可得出合適的選項.【詳解】因為.對于A選項,當時,,則在上單調遞增,A錯;對于B選項,當時,,則在上不單調,B錯;對于C選項,當時,,則在上單調遞減,C對;對于D選項,當時,,則在上不單調,D錯.故選:C.6.設是公差不為0的無窮等差數列,則“為遞增數列”是“存在正整數,當時,”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】【分析】設等差數列的公差為,則,利用等差數列的通項公式結合充分條件、必要條件的定義判斷可得出結論.【詳解】設等差數列的公差為,則,記為不超過的最大整數.若為單調遞增數列,則,若,則當時,;若,則,由可得,取,則當時,,所以,“是遞增數列”“存在正整數,當時,”;若存在正整數,當時,,取且,,假設,令可得,且,當時,,與題設矛盾,假設不成立,則,即數列是遞增數列.所以,“是遞增數列”“存在正整數,當時,”.所以,“是遞增數列”是“存在正整數,當時,”的充分必要條件.故選:C.7.在北京冬奧會上,國家速滑館“冰絲帶”使用高效環保的二氧化碳跨臨界直冷制冰技術,為實現綠色冬奧作出了貢獻.如圖描述了一定條件下二氧化碳所處的狀態與T和的關系,其中T表示溫度,單位是K;P表示壓強,單位是.下列結論中正確的是()
A.當,時,二氧化碳處于液態B.當,時,二氧化碳處于氣態C.當,時,二氧化碳處于超臨界狀態D.當,時,二氧化碳處于超臨界狀態【答案】D【解析】【分析】根據與的關系圖可得正確的選項.【詳解】當,時,,此時二氧化碳處于固態,故A錯誤.當,時,,此時二氧化碳處于液態,故B錯誤.當,時,與4非常接近,故此時二氧化碳處于固態,另一方面,時對應的是非超臨界狀態,故C錯誤.當,時,因,故此時二氧化碳處于超臨界狀態,故D正確.故選:D8.若,則()A.40 B.41 C. D.【答案】B【解析】【分析】利用賦值法可求的值.【詳解】令,則,令,則,故,故選:B.9.已知正三棱錐的六條棱長均為6,S是及其內部的點構成的集合.設集合,則T表示的區域的面積為()A. B. C. D.【答案】B【解析】【分析】求出以為球心,5為半徑的球與底面的截面圓的半徑后可求區域的面積.【詳解】設頂點在底面上的投影為,連接,則為三角形的中心,且,故.因為,故,故的軌跡為以為圓心,1為半徑的圓,而三角形內切圓的圓心為,半徑為,故的軌跡圓在三角形內部,故其面積為故選:B10.在中,.P為所在平面內的動點,且,則的取值范圍是()A. B. C. D.【答案】D【解析】【分析】依題意建立平面直角坐標系,設,表示出,,根據數量積的坐標表示、輔助角公式及正弦函數的性質計算可得;【詳解】解:依題意如圖建立平面直角坐標系,則,,,因為,所以在以為圓心,為半徑的圓上運動,設,,所以,,所以,其中,,因為,所以,即;故選:D第二部分(非選擇題共110分)二、填空題共5小題,每小題5分,共25分.11.函數的定義域是_________.【答案】【解析】【分析】根據偶次方根的被開方數非負、分母不為零得到方程組,解得即可;【詳解】解:因為,所以,解得且,故函數的定義域為;故答案為:12.已知雙曲線的漸近線方程為,則__________.【答案】【解析】【分析】首先可得,即可得到雙曲線的標準方程,從而得到、,再跟漸近線方程得到方程,解得即可;【詳解】解:對于雙曲線,所以,即雙曲線的標準方程為,則,,又雙曲線的漸近線方程為,所以,即,解得;故答案為:13.若函數的一個零點為,則________;________.【答案】①.1②.【解析】【分析】先代入零點,求得A的值,再將函數化簡為,代入自變量,計算即可.【詳解】∵,∴∴故答案為:1,14.設函數若存在最小值,則a的一個取值為________;a的最大值為___________.【答案】①.0(答案不唯一)②.1【解析】【分析】根據分段函數中的函數的單調性進行分類討論,可知,符合條件,不符合條件,時函數沒有最小值,故的最小值只能取的最小值,根據定義域討論可知或,解得.【詳解】解:若時,,∴;若時,當時,單調遞增,當時,,故沒有最小值,不符合題目要求;若時,當時,單調遞減,,當時,∴或,解得,綜上可得;故答案為:0(答案不唯一),115.己知數列各項均為正數,其前n項和滿足.給出下列四個結論:①的第2項小于3;②為等比數列;③為遞減數列;④中存在小于的項.其中所有正確結論序號是__________.【答案】①③④【解析】【分析】推導出,求出、的值,可判斷①;利用反證法可判斷②④;利用數列單調性的定義可判斷③.【詳解】由題意可知,,,當時,,可得;當時,由可得,兩式作差可得,所以,,則,整理可得,因為,解得,①對;假設數列為等比數列,設其公比為,則,即,所以,,可得,解得,不合乎題意,故數列不是等比數列,②錯;當時,,可得,所以,數列為遞減數列,③對;假設對任意的,,則,所以,,與假設矛盾,假設不成立,④對.故答案為:①③④.【點睛】關鍵點點睛:本題在推斷②④的正誤時,利用正面推理較為復雜時,可采用反證法來進行推導.三、解答題共6小愿,共85分.解答應寫出文字說明,演算步驟或證明過程.16.在中,.(1)求;(2)若,且的面積為,求的周長.【答案】(1)(2)【解析】【分析】(1)利用二倍角的正弦公式化簡可得的值,結合角的取值范圍可求得角的值;(2)利用三角形的面積公式可求得的值,由余弦定理可求得的值,即可求得的周長.【小問1詳解】解:因為,則,由已知可得,可得,因此,.【小問2詳解】解:由三角形的面積公式可得,解得.由余弦定理可得,,所以,的周長為.17.如圖,在三棱柱中,側面為正方形,平面平面,,M,N分別為,AC的中點.(1)求證:平面;(2)再從條件①、條件②這兩個條件中選擇一個作為已知,求直線AB與平面BMN所成角的正弦值.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個解答計分.【答案】(1)見解析(2)見解析【解析】【分析】(1)取的中點為,連接,可證平面平面,從而可證平面.(2)選①②均可證明平面,從而可建立如圖所示的空間直角坐標系,利用空間向量可求線面角的正弦值.【小問1詳解】取的中點為,連接,由三棱柱可得四邊形為平行四邊形,而,則,而平面,平面,故平面,而,則,同理可得平面,而平面,故平面平面,而平面,故平面,小問2詳解】因為側面為正方形,故,而平面,平面平面,平面平面,故平面,因為,故平面,因為平面,故,若選①,則,而,,故平面,而平面,故,所以,而,,故平面,故可建立如所示的空間直角坐標系,則,故,設平面的法向量為,則,從而,取,則,設直線與平面所成的角為,則.若選②,因,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空間直角坐標系,則,故,設平面的法向量為,則,從而,取,則,設直線與平面所成的角為,則.18.在校運動會上,只有甲、乙、丙三名同學參加鉛球比賽,比賽成績達到以上(含)的同學將獲得優秀獎.為預測獲得優秀獎的人數及冠軍得主,收集了甲、乙、丙以往的比賽成績,并整理得到如下數據(單位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假設用頻率估計概率,且甲、乙、丙的比賽成績相互獨立.(1)估計甲在校運動會鉛球比賽中獲得優秀獎的概率;(2)設X是甲、乙、丙在校運動會鉛球比賽中獲得優秀獎的總人數,估計X的數學期望E(X);(3)在校運動會鉛球比賽中,甲、乙、丙誰獲得冠軍的概率估計值最大?(結論不要求證明)【答案】(1)0.4(2)(3)丙【解析】【分析】(1)由頻率估計概率即可(2)求解得X的分布列,即可計算出X的數學期望.(3)計算出各自獲得最高成績的概率,再根據其各自的最高成績可判斷丙奪冠的概率估計值最大.【小問1詳解】由頻率估計概率可得甲獲得優秀的概率為0.4,乙獲得優秀的概率為0.5,丙獲得優秀的概率為0.5,故答案為0.4【小問2詳解】設甲獲得優秀為事件A1,乙獲得優秀為事件A2,丙獲得優秀為事件A3,,,.∴X的分布列為X0123P∴【小問3詳解】丙奪冠概率估計值最大.因為鉛球比賽無論比賽幾次就取最高成績.比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績是所有成績中最高的,比賽次數越多,對丙越有利.19.已知橢圓:的一個頂點為,焦距為.(1)求橢圓E的方程;(2)過點作斜率為k的直線與橢圓E交于不同的兩點B,C,直線AB,AC分別與x軸交于點M,N,當時,求k的值.【答案】(1)(2)【解析】【分析】(1)依題意可得,即可求出,從而求出橢圓方程;(2)首先表示出直線方程,設、,聯立直線與橢圓方程,消元列出韋達定理,由直線、的方程,表示出、,根據得到方程,解得即可;【小問1詳解】解:依題意可得,,又,所以,所以橢圓方程為;【小問2詳解】解:依題意過點的直線為,設、,不妨令,由,消去整理得,所以,解得,所以,,直線的方程為,令,解得,直線的方程為,令,解得,所以,所以,即即即整理得,解得20.已知函數.(1)求曲線在點處的切線方程;(2)設,討論函數在上的單調性;(3)證明:對任意的,有.【答案】(1)(2)在上單調遞增.(3)證明見解析【解析】【分析】(1)先求出切點坐標,在由導數求得切線斜率,即得切線方程;(2)在求一次導數無法判斷的情況下,構造新的函數,再求一次導數,問題即得解;(3)令,,即證,由第二問結論可知在[0,+∞)上單調遞增,即得證.【小問1詳解】解:因為,所以,即切點坐標為,又,∴切線斜率∴切線方程為:【小問2詳解】解:因為,所以,令,則,∴在上單調遞增,∴∴在上恒成立,∴在上單調遞增.【小問3詳解】解:原不等式等價于,令,,即證,∵,,由(2)知在上單調遞增,∴,∴∴在上單調遞增,又因為,∴,所以命題得證.21.已知為有窮整數數列.給定正整數m,若對任意的,在Q中存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年的苗木購銷合同范本
- 2025梨子購銷合同書范文
- 2025版權轉讓合同協議書范本
- 全民國家安全教育日十周年PT增強安全意識維護國家安全課件下載
- 2025員工勞動合同續簽申請書范文
- 2025保險公司外匯借款合同借款合同
- 2025水泥買賣合同范本水泥買賣合同樣本
- 2025標準商品交易合同范本
- 8.2《做中華傳統美德的踐行者》 課件 2024-2025學年統編版道德與法治七年級下冊
- 2025貸款合同模板
- YY-T 0954-2015 無源外科植入物-I型膠原蛋白植入劑
- 12-2017-2021年陜西中考數學真題分類匯編之統計與概率
- 膿毒血癥課件
- 2024年時事政治熱點題庫200道含完整答案(必刷)
- 2024年北京亦莊國際投資發展有限公司招聘筆試沖刺題(帶答案解析)
- 對方當事人送達地址及相關信息確認書
- 屈光性白內障手術發展
- 基于物聯網的智能衣柜
- 醫院政工查房
- 緩和醫療-以死觀生的生活智慧智慧樹知到期末考試答案2024年
- 拔河比賽技巧知識講座
評論
0/150
提交評論