湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷含解析_第1頁
湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷含解析_第2頁
湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷含解析_第3頁
湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷含解析_第4頁
湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省荊州市荊州區重點名校2025屆5月統考數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a23.據統計,第22屆冬季奧林匹克運動會的電視轉播時間長達88000小時,社交網站和國際奧委會官方網站也創下冬奧會收看率紀錄.用科學記數法表示88000為()A.0.88×105B.8.8×104C.8.8×105D.8.8×1064.如圖,正方形ABCD的邊長為2,其面積標記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2,…,按照此規律繼續下去,則S2018的值為()A. B. C. D.5.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(

)A. B. C. D.6.下列各類數中,與數軸上的點存在一一對應關系的是()A.有理數B.實數C.分數D.整數7.下列調查中,最適合采用全面調查(普查)方式的是()A.對重慶市初中學生每天閱讀時間的調查B.對端午節期間市場上粽子質量情況的調查C.對某批次手機的防水功能的調查D.對某校九年級3班學生肺活量情況的調查8.下列計算正確的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b29.如圖,三棱柱ABC﹣A1B1C1的側棱長和底面邊長均為2,且側棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(左)視圖的面積為()A. B. C. D.410.如圖,EF過?ABCD對角線的交點O,交AD于E,交BC于F,若?ABCD的周長為18,,則四邊形EFCD的周長為A.14 B.13 C.12 D.10二、填空題(本大題共6個小題,每小題3分,共18分)11.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.12.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點P旋轉得到△PDE(點C、Q分別與點D、E對應),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.13.若與是同類項,則的立方根是.14.若式子在實數范圍內有意義,則x的取值范圍是_______.15.如圖,已知在平行四邊形ABCD中,E是邊AB的中點,F在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.16.分解因式___________三、解答題(共8題,共72分)17.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發生了側翻沉船事故,立即發出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)18.(8分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.19.(8分)如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數的圖象上.(1)求m,k的值;(2)如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數表達式.20.(8分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數m取何值,方程總有兩個實數根;(2)若方程兩個根均為正整數,求負整數m的值.21.(8分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.22.(10分)某校為選拔一名選手參加“美麗邵陽,我為家鄉做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數及普通話項目對應扇形的圓心角大小;求李明在選拔賽中四個項目所得分數的眾數和中位數;根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉做代言”主題演講比賽,并說明理由.23.(12分)如圖,已知二次函數的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.24.如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數的時候,a+3一定為正數,所以點P可能在第一象限,一定不在第四象限,

當a為負數的時候,a+3可能為正數,也可能為負數,所以點P可能在第二象限,也可能在第三象限,

故選D.本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.2、D【解析】

直接合并同類項,合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.【詳解】2a2+3a2=5a2.故選D.本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數也相同的項,叫做同類項;合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.3、B【解析】試題分析:根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).因此,∵88000一共5位,∴88000=8.88×104.故選B.考點:科學記數法.4、A【解析】

根據等腰直角三角形的性質可得出2S2=S1,根據數的變化找出變化規律“Sn=()n﹣2”,依此規律即可得出結論.【詳解】如圖所示,∵正方形ABCD的邊長為2,△CDE為等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.觀察,發現規律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,∴Sn=()n﹣2.當n=2018時,S2018=()2018﹣2=()3.故選A.本題考查了等腰直角三角形的性質、勾股定理,解題的關鍵是利用圖形找出規律“Sn=()n﹣2”.5、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.6、B【解析】

根據實數與數軸上的點存在一一對應關系解答.【詳解】實數與數軸上的點存在一一對應關系,故選:B.本題考查了實數與數軸上點的關系,每一個實數都可以用數軸上唯一的點來表示,反過來,數軸上的每個點都表示一個唯一的實數,也就是說實數與數軸上的點一一對應.7、D【解析】

A、對重慶市初中學生每天閱讀時間的調查,調查范圍廣適合抽樣調查,故A錯誤;B、對端午節期間市場上粽子質量情況的調查,調查具有破壞性,適合抽樣調查,故B錯誤;C、對某批次手機的防水功能的調查,調查具有破壞性,適合抽樣調查,故C錯誤;D、對某校九年級3班學生肺活量情況的調查,人數較少,適合普查,故D正確;故選D.8、B【解析】分析:根據合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關鍵.9、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側棱長,把相關數值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關鍵是得到求左視圖的面積的等量關系,難點是得到側面積的寬度.10、C【解析】

∵平行四邊形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四邊形ABCD=18,∴CD+AD=9,∴C四邊形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故選C.本題關鍵在于利用三角形全等,解題關鍵是將四邊形CDEF的周長進行轉化.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=(x﹣1)2+【解析】

直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.此題主要考查了拋物線與坐標軸交點求法以及二次函數的平移,正確得出平移方向和距離是解題關鍵.12、1【解析】

連接AD,根據PQ∥AB可知∠ADQ=∠DAB,再由點D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據勾股定理可知,AQ=11-4x,故可得出x的值,進而得出結論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,

∴CP=3x=1;故答案為:1.本題考查平行線的性質、旋轉變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質等知識,解題的關鍵是學會利用參數解決問題,屬于中考常考題型.13、2.【解析】試題分析:若與是同類項,則:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案為2.考點:2.立方根;2.合并同類項;3.解二元一次方程組;4.綜合題.14、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數范圍內有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.考查的是分式有意義的條件,掌握分式有意義的條件是解題的關鍵.15、【解析】

根據,只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.本題考查的知識點是平面向量,平行四邊形的性質,解題關鍵是表達出、.16、【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題(共8題,共72分)17、小時【解析】

過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據時間=路程÷速度即可求出海警船到大事故船C處所需的時間.【詳解】解:如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時間大約為:50÷40=(小時).考點:解直角三角形的應用-方向角問題18、(1)證明過程見解析;(2)1.【解析】試題分析:(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據等腰直角三角形的性質得到∠ADO=∠A,即可得到結論;(2)根據垂直的定義得到∠E=∠ADB=90°,根據平行線的性質得到∠DCE=∠BDC,根據相似三角形的性質得到,解方程即可得到結論.試題解析:(1)連接OD,∵CD是⊙O切線,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB為⊙O的直徑,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE?AE,∴11=2(2+AD),∴AD=1.考點:(1)切線的性質;(2)相似三角形的判定與性質.19、(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數法求一次函數解析式;(3)過點A作AM⊥x軸于點M,過點B作BN⊥y軸于點N,兩線交于點P.根據平行四邊形判定和勾股定理可求出M,N的坐標.【詳解】解:(1)∵點A(m,m+1),B(m+3,m-1)都在反比例函數y=的圖像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).設直線AB的函數表達式為y=k′x+b(k′≠0),則解得∴直線AB的函數表達式為y=-x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答過程如下:過點A作AM⊥x軸于點M,過點B作BN⊥y軸于點N,兩線交于點P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四邊形ANMB是平行四邊形,此時M(3,0),N(0,2).當M′(-3,0),N′(0,-2)時,根據勾股定理能求出AM′=BN′,AB=M′N′,即四邊形AM′N′B是平行四邊形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【點睛】本題考核知識點:反比例函數綜合.解題關鍵點:熟記反比例函數的性質.20、(1)見解析;(2)m=-1.【解析】

(1)根據方程的系數結合根的判別式,即可得出△=1>1,由此即可證出:無論實數m取什么值,方程總有兩個不相等的實數根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據已知條件即可得出結論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數,且m為負整數∴m=-1.本題考查了一元二次方程與根的判別式,解題的關鍵是熟練的掌握根的判別式與根據因式分解法解一元二次方程.21、(1)1;(2)【解析】(1)由勾股定理求AB,設⊙O的半徑為r,則r=(AC+BC-AB)求解;(2)過G作GP⊥AC,垂足為P,根據CG平分直角∠ACB可知△PCG為等腰直角三角形,設PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.試題解析:(1)在Rt△ABC中,由勾股定理得AB==5,∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;(2)過G作GP⊥AC,垂足為P,設GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴=,解得x=,即GP=,CG=,∴OG=CG-CO=-=,在Rt△ODG中,DG==.22、(1)服裝項目的權數是10%,普通話項目對應扇形的圓心角是72°;(2)眾數是85,中位數是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉做代言”主題演講比賽,理由見解析.【解析】

(1)根據扇形圖用1減去其它項目的權重可求得服裝項目的權重,用360度乘以普通話項目的權重即可求得普通話項目對應扇形的圓心角大小;(2)根據統計表中的數據可以求得李明在選拔賽中四個項目所得分數的眾數和中位數;(3)根據統計圖和統計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權數是:1﹣20%﹣30%﹣40%=10%,普通話項目對應扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉做代言”主題演講比賽.本題考查了扇形統計圖、中位數、眾數、加權平均數,明確題意,結合統計表和統計圖找出所求問題需要的條件,運用數形結合的思想進行解答是解題的關鍵.23、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數的頂點D的坐標,然后求出A、B、C的坐標,然后根據即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據勾股定理求出DH,即可求出平移后的二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論