貴州省貴陽市2025屆高三下學期期中練習數學試題試卷含解析_第1頁
貴州省貴陽市2025屆高三下學期期中練習數學試題試卷含解析_第2頁
貴州省貴陽市2025屆高三下學期期中練習數學試題試卷含解析_第3頁
貴州省貴陽市2025屆高三下學期期中練習數學試題試卷含解析_第4頁
貴州省貴陽市2025屆高三下學期期中練習數學試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省貴陽市2025屆高三下學期期中練習數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數2.設集合,,則()A. B.C. D.3.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.34.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.195.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}6.已知集合,,則()A. B.C.或 D.7.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.8.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.9.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.310.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.11.某人用隨機模擬的方法估計無理數的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內投入粒豆子,并統計出這些豆子在曲線上方的有粒,則無理數的估計值是()A. B. C. D.12.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為__.14.在中,點在邊上,且,設,,則________(用,表示)15.在二項式的展開式中,的系數為________.16.設函數滿足,且當時,又函數,則函數在上的零點個數為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正數x,y,z滿足xyzt(t為常數),且的最小值為,求實數t的值.18.(12分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.19.(12分)已知函數,設為的導數,.(1)求,;(2)猜想的表達式,并證明你的結論.20.(12分)已知,,(1)求的最小正周期及單調遞增區間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.21.(12分)已知函數.(1)求函數的最小正周期以及單調遞增區間;(2)已知,若,,,求的面積.22.(10分)已知函數(為實常數).(1)討論函數在上的單調性;(2)若存在,使得成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.2.A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.3.B【解析】

用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.4.B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.5.C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.6.D【解析】

首先求出集合,再根據補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.7.B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.8.A【解析】

設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A本題考查三角形面積公式的應用,考查閱讀分析能力.9.C【解析】

對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.10.A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A本題考查雙曲線的簡單幾何性質,屬于中檔題.11.D【解析】

利用定積分計算出矩形中位于曲線上方區域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區域的面積,考查計算能力,屬于中等題.12.A【解析】

先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:本題主要考查過曲線上一點的切線方程的求法,屬基礎題.14.【解析】

結合圖形及向量的線性運算將轉化為用向量表示,即可得到結果.【詳解】在中,因為,所以,又因為,所以.故答案為:本題主要考查三角形中向量的線性運算,關鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉化.15.60【解析】

直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數為.故答案為:.本題考查了二項式定理,意在考查學生的計算能力和應用能力.16.1【解析】

判斷函數為偶函數,周期為2,判斷為偶函數,計算,,畫出函數圖像,根據圖像到答案.【詳解】知,函數為偶函數,,函數關于對稱。,故函數為周期為2的周期函數,且。為偶函數,,,當時,,,函數先增后減。當時,,,函數先增后減。在同一坐標系下作出兩函數在上的圖像,發現在內圖像共有1個公共點,則函數在上的零點個數為1.故答案為:.本題考查了函數零點問題,確定函數的奇偶性,對稱性,周期性,畫出函數圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.t=1【解析】

把變形為結合基本不等式進行求解.【詳解】因為即,當且僅當,,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.本題主要考查基本不等式的應用,利用基本不等式求解最值時要注意轉化為適用形式,同時要關注不等號是否成立,側重考查數學運算的核心素養.18.(1)(2)見解析【解析】

(1)因為數列的前項和滿足:,所以當時,,即解得或,因為數列都是正項,所以,因為,所以,解得或,因為數列都是正項,所以,當時,有,所以,解得,當時,,符合所以數列的通項公式,;(2)因為,所以,所以數列的前項和為:,當時,有,所以,所以對于任意,數列的前項和.19.,;,證明見解析【解析】

對函數進行求導,并通過三角恒等變換進行轉化求得的表達式,對函數再進行求導并通過三角恒等變換進行轉化求得的表達式;根據中,的表達式進行歸納猜想,再利用數學歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數學歸納法證明:①當時,成立,②假設時,猜想成立即當時,當時,猜想成立由①②對成立本題考查導數及其應用、三角恒等變換、歸納與猜想和數學歸納法;考查學生的邏輯推理能力和運算求解能力;熟練掌握用數學歸納法進行證明的步驟是求解本題的關鍵;屬于中檔題.20.(1)的最小正周期為:;函數單調遞增區間為:;(2).【解析】

(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.21.(1)最小正周期為,單調遞增區間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數的解析式為,利用正弦型函數的周期公式可求得函數的最小正周期,解不等式可求得該函數的單調遞增區間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數的最小正周期為,由得,因此,函數的單調遞增區間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.本題考查正弦型函數的周期和單調區間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論