




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省濱州市鄒平雙語學(xué)校一、二區(qū)2024-2025學(xué)年高三下-第三次統(tǒng)考(期中)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.52.已知F是雙曲線(k為常數(shù))的一個焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.23.若函數(shù)恰有3個零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.5.已知是雙曲線的兩個焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.6.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件7.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.38.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④9.已知集合,,則為()A. B. C. D.10.已知m為實(shí)數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件11.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.12.在等腰直角三角形中,,為的中點(diǎn),將它沿翻折,使點(diǎn)與點(diǎn)間的距離為,此時四面體的外接球的表面積為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對于任意的正數(shù),不等式恒成立,則的最大值為_____.14.設(shè)滿足約束條件,則的取值范圍是______.15.已知數(shù)列滿足,且,則______.16.已知點(diǎn)是橢圓上一點(diǎn),過點(diǎn)的一條直線與圓相交于兩點(diǎn),若存在點(diǎn),使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,求證:(1);(2).18.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補(bǔ)充在上面問題中并作答.19.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.20.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.21.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列{}的前項(xiàng)和為,求使成立的的最小值.22.(10分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長度最小時,求s的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.2.D【解析】
分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時,等式不是雙曲線的方程;當(dāng)時,,可化為,可得虛半軸長,所以點(diǎn)F到雙曲線C的一條漸近線的距離為2.故選:D本題考查雙曲線的方程與點(diǎn)到直線的距離.屬于基礎(chǔ)題.3.B【解析】
求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點(diǎn),即可求實(shí)數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點(diǎn),函數(shù)的極值為:,函數(shù)恰有三個零點(diǎn),則實(shí)數(shù)的取值范圍是:.故選B.該題考查的是有關(guān)結(jié)合函數(shù)零點(diǎn)個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點(diǎn)個數(shù)的問題,難度不大.4.A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.5.B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.6.C【解析】
先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域?yàn)榛颍ㄇ遥┝睿湓趩握{(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.7.D【解析】
在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【詳解】因?yàn)椋裕矗郑怨睿裕矗驗(yàn)楹瘮?shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.8.D【解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進(jìn)行選擇.【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.9.C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧希怨蔬x:C本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.10.A【解析】
根據(jù)直線平行的等價條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】當(dāng)m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當(dāng)m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當(dāng)m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗(yàn)看兩直線是否重合.11.D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時,;當(dāng)時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.12.D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點(diǎn),這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點(diǎn),設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計(jì)算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補(bǔ)形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補(bǔ)形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.14.【解析】
作出可行域,將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計(jì)算出與,再由不等式的簡單性質(zhì)即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當(dāng)時,z=0;當(dāng)時將目標(biāo)函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.15.【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.本題考查了等比數(shù)列定義,考查了對數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.16.【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點(diǎn),使得,,即,,,,故答案為:本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運(yùn)用,考查直線參數(shù)方程的運(yùn)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析.【解析】
(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當(dāng)且僅當(dāng)a=b=c等號成立∴.本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.18.詳見解析【解析】
選擇①,利用正弦定理求得,利用余弦定理求得,再計(jì)算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計(jì)算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因?yàn)椋裕矗挥捎嘞叶ɡ淼茫矗喌茫獾没颍ㄉ崛ィ凰赃吷系母邽?選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.19.(1)證明見解析;(2).【解析】
(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個法向量為,則,令,則,又平面的一個法向量為,所以二面角的余弦值為,即二面角的余弦值為.該題考查的是有關(guān)立體幾何的問題,涉及到的知識點(diǎn)有利用線面垂直證明線性垂直,利用向量法求二面角的余弦值,屬于中檔題目.20.(1)見解析;(2).【解析】
(1)取的中點(diǎn),連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值,進(jìn)而可求得其正弦值.【詳解】(1)取中點(diǎn),連接、、,且,四邊形為平行四邊形,且,、分別為、中點(diǎn),且,則四邊形為平行四邊形,且,且,且,所以,四邊形為平行四邊形,且,四邊形為平行四邊形,,平面,平面,平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,,設(shè)平面的法向量為,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工現(xiàn)場安全管理試題及答案
- 信息系統(tǒng)項(xiàng)目管理師考試備考經(jīng)驗(yàn)分享與探討試題及答案
- 信息系統(tǒng)監(jiān)理師考生常見疑問試題及答案
- 測試過程中的多方溝通與協(xié)作機(jī)制研究試題及答案
- 復(fù)習(xí)高效的公路工程考試試題及答案簡析
- 2025年減貧政策評估試題及答案
- 數(shù)據(jù)庫管理中的新技術(shù)應(yīng)用試題及答案
- 信息系統(tǒng)項(xiàng)目管理評估標(biāo)準(zhǔn)試題及答案
- 數(shù)據(jù)庫規(guī)范化原則試題及答案
- 嵌入式項(xiàng)目的評估與優(yōu)化試題及答案
- 筏板基礎(chǔ)項(xiàng)目施工工藝規(guī)范
- 中國玉石及玉文化鑒賞知到章節(jié)答案智慧樹2023年同濟(jì)大學(xué)
- 家庭園藝營養(yǎng)土產(chǎn)品技術(shù)標(biāo)準(zhǔn)2022
- 浙江高等教育崗前培訓(xùn)考試題目-大學(xué)心理學(xué)1-20套
- 人教版五年級下數(shù)學(xué)周末練習(xí)題13(分?jǐn)?shù)加減法)
- 科學(xué)青島版五年級下冊(2022年新編)21 蠟燭的燃燒 課件
- 垃圾處理-機(jī)械爐排爐
- 軟件系統(tǒng)運(yùn)維及方案
- 抗菌藥物臨床應(yīng)用指導(dǎo)原則(2023年版)
- 預(yù)制混凝土構(gòu)件檢驗(yàn)原始記錄表
- 護(hù)理學(xué)基礎(chǔ)試題及答案護(hù)理學(xué)基礎(chǔ)試題庫
評論
0/150
提交評論