




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省韶關市南雄市2024年中考聯考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環).下列說法中正確的是()A.若這5次成績的中位數為8,則x=8B.若這5次成績的眾數是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=82.如圖1,點F從菱形ABCD的頂點A出發,沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.23.點A(4,3)經過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關于x軸對稱 B.關于y軸對稱C.繞原點逆時針旋轉 D.繞原點順時針旋轉4.實數的倒數是()A. B. C. D.5.規定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現有下列結論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結論中正確的有(
)A.①② B.③④ C.②③ D.②④6.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數不可能是()A.16 B.17 C.18 D.198.如圖,在平面直角坐標系中,位于第二象限,點的坐標是,先把向右平移3個單位長度得到,再把繞點順時針旋轉得到,則點的對應點的坐標是()A. B. C. D.9.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+1210.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣11.如圖,淇淇一家駕車從A地出發,沿著北偏東60°的方向行駛,到達B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯誤的是()A.①② B.②④ C.①③ D.③④12.若,則的值為()A.12 B.2 C.3 D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點A(2,0),B(0,2),C(-1,m)在同一條直線上,則m的值為___________.14.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.15.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數的圖象經過點B,則k的值是_____.16.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.17.已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為.18.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數為奇數的概率是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統計,并繪制以下不完整的頻數分布表(圖11-1)和扇形統計圖(圖11-2),根據圖表中的信息解答下列問題:分組
分數段(分)
頻數
A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數和m的值;(2)直接學出該班學生的中考體育成績的中位數落在哪個分數段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.20.(6分)如圖,要利用一面墻(墻長為25米)建羊圈,用100米的圍欄圍成總面積為400平方米的三個大小相同的矩形羊圈,求羊圈的邊長AB,BC各為多少米?21.(6分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變為6m,求水面上漲的高度.22.(8分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD.求證;∠BDC=∠A.若∠C=45°,⊙O的半徑為1,直接寫出AC的長.23.(8分)為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.24.(10分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點P從點A出發,沿折線AB﹣BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動,點Q從點C出發,沿CA方向以每秒個單位長度的速度運動,兩點同時出發,當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.(1)求線段AQ的長;(用含t的代數式表示)(2)當點P在AB邊上運動時,求PQ與△ABC的一邊垂直時t的值;(3)設△APQ的面積為S,求S與t的函數關系式;(4)當△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.25.(10分)如圖1,在菱形ABCD中,AB=,tan∠ABC=2,點E從點D出發,以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉一個角α(α=∠BCD),得到對應線段CF.(1)求證:BE=DF;(2)當t=秒時,DF的長度有最小值,最小值等于;(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,△EPQ是直角三角形?26.(12分)如圖所示,在中,,用尺規在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.27.(12分)如圖,在△ABC中,∠ACB=90°,點O是BC上一點.尺規作圖:作⊙O,使⊙O與AC、AB都相切.(不寫作法與證明,保留作圖痕跡)若⊙O與AB相切于點D,與BC的另一個交點為點E,連接CD、DE,求證:DB
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據中位數的定義判斷A;根據眾數的定義判斷B;根據方差的定義判斷C;根據平均數的定義判斷D.【詳解】A、若這5次成績的中位數為8,則x為任意實數,故本選項錯誤;B、若這5次成績的眾數是8,則x為不是7與9的任意實數,故本選項錯誤;C、如果x=8,則平均數為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;
故選D.【點睛】本題考查中位數、眾數、平均數和方差:一般地設n個數據,x1,x2,…xn的平均數為,則方差,它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.2、C【解析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質和一次函數圖象性質,解答過程中要注意函數圖象變化與動點位置之間的關系.3、C【解析】分析:根據旋轉的定義得到即可.詳解:因為點A(4,3)經過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉90°得到點B,故選C.點睛:本題考查了旋轉的性質:旋轉前后兩個圖形全等,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線段的夾角等于旋轉角.4、D【解析】因為=,所以的倒數是.故選D.5、C【解析】分析:①通過解方程得到該方程的根,結合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結論;③根據“倍根方程”的定義即可得到結論;④若點(m,n)在反比例函數y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數圖象上點的坐標特征,根與系數的關系,正確的理解倍根方程的定義是解題的關鍵.6、B【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.7、A【解析】
一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數不變;經過兩條鄰邊,邊數增加一條.8、D【解析】
根據要求畫出圖形,即可解決問題.【詳解】解:根據題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點睛】本題考查平移變換,旋轉變換等知識,解題的關鍵是正確畫出圖象,屬于中考常考題型.9、D【解析】
根據等式的性質2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.【點睛】本題考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.10、D【解析】
首先根據矩形的性質,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點睛】本題考查了矩形的性質與角平分線的性質以及勾股定理的應用,解題的關鍵是熟練的掌握矩形的性質與角平分線的性質以及勾股定理的應用.11、B【解析】
先根據題意畫出圖形,再根據平行線的性質及方向角的描述方法解答即可.【詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯誤.故選B.【點睛】本題考查的是方向角,平行線的性質,特殊角的三角函數值,解答此類題需要從運動的角度,正確畫出方位角,再結合平行線的性質求解.12、A【解析】
先根據得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點睛】本題主要考查整體代入法求代數式的值,掌握完全平方公式和整體代入法是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】設過點A(2,0)和點B(0,2)的直線的解析式為:,則,解得:,∴直線AB的解析式為:,∵點C(-1,m)在直線AB上,∴,即.故答案為3.點睛:在平面直角坐標系中,已知三點共線和其中兩點的坐標,求第3點坐標中待定字母的值時,通常先由已知兩點的坐標求出過這兩點的直線的解析式,在將第3點的坐標代入所求解析式中,即可求得待定字母的值.14、【解析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.15、.【解析】
已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數的解析式中,即可求出k的值.【詳解】過點B作BC垂直OA于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數法確定反比例函數的解析式,只需求出反比例函數圖象上一點的坐標;16、1【解析】
主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.17、1.【解析】試題分析:直接把x=1代入已知方程就得到關于m的方程,再解此方程即可.試題解析:∵x=1是一元二次方程x1-1mx+4=0的一個解,∴4-4m+4=0,∴m=1.考點:一元二次方程的解.18、.【解析】
根據題意可知,擲一次骰子有6個可能結果,而點數為奇數的結果有3個,所以點數為奇數的概率為.考點:概率公式.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50,18;(2)中位數落在51﹣56分數段;(3).【解析】
(1)利用C分數段所占比例以及其頻數求出總數即可,進而得出m的值;(2)利用中位數的定義得出中位數的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學生人數:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學生人數:50人,∴第25和第26個數據的平均數是中位數,∴中位數落在51﹣56分數段;(3)如圖所示:將男生分別標記為A1,A2,女生標記為B1
A1
A2
B1
A1
(A1,A2)
(A1,B1)
A2
(A2,A1)
(A2,B1)
B1
(B1,A1)
(B1,A2)
P(一男一女).【點睛】本題考查列表法與樹狀圖法,頻數(率)分布表,扇形統計圖,中位數.20、羊圈的邊長AB,BC分別是20米、20米.【解析】試題分析:設AB的長度為x米,則BC的長度為(100﹣4x)米;然后根據矩形的面積公式列出方程.試題解析:設AB的長度為x米,則BC的長度為(100﹣4x)米.根據題意得(100﹣4x)x=400,解得x1=20,x2=1.則100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考點:一元二次方程的應用.21、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.22、(1)詳見解析;(2)1+【解析】
(1)連接OD,結合切線的性質和直徑所對的圓周角性質,利用等量代換求解(2)根據勾股定理先求OC,再求AC.【詳解】(1)證明:連結.如圖,與相切于點D,是的直徑,即(2)解:在中,.【點睛】此題重點考查學生對圓的認識,熟練掌握圓的性質是解題的關鍵.23、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數,再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數,然后根據概率公式求解.【詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數,其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.24、(1)4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)S與t的函數關系式為:S=;(4)t的值為或.【解析】分析:(1)根據勾股定理求出AC的長,然后由AQ=AC-CQ求解即可;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:當Q在C處,P在A處時,PQ⊥BC;當PQ⊥AB時;當PQ⊥AC時;分別求解即可;(3)當P在AB邊上時,即0≤t≤1,作PG⊥AC于G,或當P在邊BC上時,即1<t≤3,分別根據三角形的面積求函數的解析式即可;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,作PG⊥AC于G,則AG=GQ,列方程求解;②當P在邊AC上時,AQ=PQ,根據勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:①當Q在C處,P在A處時,PQ⊥BC,此時t=0;②當PQ⊥AB時,如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當PQ⊥AC時,如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)分兩種情況:①當P在AB邊上時,即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當P在邊BC上時,即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數關系式為:S=;(4)當△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當P在邊AB上時,如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當P在邊AC上時,如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點睛:此題主要考查了三角形中的動點問題,用到勾股定理,等腰三角形的性質,直角三角形的性質,二次函數等知識,是一道比較困難的綜合題,關鍵是合理添加輔助線,構造合適的方程求解.25、(1)見解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒時,△EPQ是直角三角形【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,結合DC=BC、CE=CF證△DCF≌△BCE即可得;(2)作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,由DF=BE′知此時DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°時,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根據AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°時,由菱形ABCD的對角線AC⊥BD知EC與AC重合,可得DE=6.【詳解】(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四邊形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如圖1,作BE′⊥DA交DA的延長線于E′.當點E運動至點E′時,DF=BE′,此時DF最小,在Rt△ABE′中,AB=6,tan∠ABC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論