




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省舒城干汊河中學2025屆高三下學期回頭考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,將集合的所有元素從小到大一次排列構成一個新數列,則()A.1194 B.1695 C.311 D.10952.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.103.已知函數是定義在上的偶函數,當時,,則,,的大小關系為()A. B. C. D.4.定義在上的奇函數滿足,若,,則()A. B.0 C.1 D.25.在區間上隨機取一個數,使直線與圓相交的概率為()A. B. C. D.6.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.7.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.8.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定9.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.310.在區間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.1111.若集合,,則A. B. C. D.12.一只螞蟻在邊長為的正三角形區域內隨機爬行,則在離三個頂點距離都大于的區域內的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.14.設Sn為數列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.15.直線xsinα+y+2=0的傾斜角的取值范圍是________________.16.等腰直角三角形內有一點P,,,,,則面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.18.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.19.(12分)設函數f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(20.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.21.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.22.(10分)隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統的概率;(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
確定中前35項里兩個數列中的項數,數列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數列分組求和,掌握等差數列和等比數列前項和公式是解題基礎.解題關鍵是確定數列的前35項中有多少項是中的,又有多少項是中的.2.C【解析】
根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.3.C【解析】
根據函數的奇偶性得,再比較的大小,根據函數的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數的奇偶性的應用、冪、指、對的大小比較,以及根據函數的單調性比較大小,屬于中檔題.4.C【解析】
首先判斷出是周期為的周期函數,由此求得所求表達式的值.【詳解】由已知為奇函數,得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數的奇偶性和周期性,屬于基礎題.5.C【解析】
根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.6.B【解析】
設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.7.D【解析】
根據三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.8.C【解析】
由函數的增減性及導數的應用得:設,求得可得為增函數,又,,時,根據條件得,即可得結果.【詳解】解:設,則,即為增函數,又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數的增減性及導數的應用,屬中檔題.9.C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.10.D【解析】
由題意,本題符合幾何概型,只要求出區間的長度以及使不等式成立的的范圍區間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區間長度為6,使得成立的的范圍為,區間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.11.C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12.A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區域如圖中陰影部分所示,陰影部分區域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.等腰三角形【解析】∵∴根據正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,14.55【解析】
由求出.由,可得,兩式相減,可得數列是以1為首項,1為公差的等差數列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數列是以1為首項,1為公差的等差數列,.故答案為:55.【點睛】本題考查求數列的前項和,屬于基礎題.15.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:16.【解析】
利用余弦定理計算,然后根據平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,(2)最小正整數的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.【點睛】本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.18.(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.19.(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數的周期,三角恒等變換,意在考查學生的計算能力和綜合應用能力.20.(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數列的通項公式,考查裂項求和,是基礎題.21.(1);(2),理由見解析.【解析】
(1)求出橢圓的上、下焦點坐標,利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設點的坐標為,求出直線的方程,求出點的坐標,由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結論.【詳解】(1)由題意可知,橢圓的上焦點為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設點的坐標為,則,得,直線的斜率為,所以,直線的方程為,聯立,解得,即點,直線的斜率為,直線的斜率為,所以,,,因此,.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中定值問題的求解,考查計算能力,屬于中等題.22.(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為,可得某個時間段需要檢查污染源處理系統的概率;(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數的單調性,可得期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 空中貨運的服務質量與運輸效率考核試卷
- 五金批發市場行業市場消費者行為分析優化實踐與總結考核試卷
- 電動葫蘆租賃考核試卷
- 2025豪華別墅精裝修工程合同
- 2025企業物業保安服務合同
- 2025年上海市綠色建筑認證合同范本
- 2025網絡平臺交易合同協議書樣本
- 2025屆湖南省常德市鼎城區陽明中學高三下學期3月月考歷史試題(含答案)
- 全自動智能自適應服裝生產控制系統
- 煤礦采煤隊承包協議范例二零二五年
- 廣西壯族自治區馬山縣實驗高中-雙休背后:從“要我學”到“我要學”的轉變-高三家長會【課件】
- GB/Z 27021.13-2025合格評定管理體系審核認證機構要求第13部分:合規管理體系審核與認證能力要求
- 湖南省長沙市四大名校2024-2025學年高三2月月考語文試題(原卷版+解析版)
- 中華民族節日文化知到課后答案智慧樹章節測試答案2025年春云南大學
- 《政府采購管理研究的國內外文獻綜述》5500字
- 糖尿病護理查房提出問題
- 回收設施布局與優化-深度研究
- 2024年國網浙江省電力有限公司招聘考試真題
- 微專題2 質量守恒定律的應用(解析版)
- 分析化學考試題(附參考答案)
- 廣東省廣州市越秀區2025年中考一模歷史模擬試題(含答案)
評論
0/150
提交評論