




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆陜西榆林市高三全真四模數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.函數在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-23.設不等式組,表示的平面區域為,在區域內任取一點,則點的坐標滿足不等式的概率為A. B.C. D.4.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.5.在區間上隨機取一個數,使直線與圓相交的概率為()A. B. C. D.6.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.7.已知,則,不可能滿足的關系是()A. B. C. D.8.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.9.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.10.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.11.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立12.設,,,則、、的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,只有第5項的二項式系數最大,則該二項展開式中的常數項等于_____.14.已知為等比數列,是它的前項和.若,且與的等差中項為,則__________.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.16.若實數,滿足不等式組,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.18.(12分)據《人民網》報道,美國國家航空航天局(NASA)發文稱,相比20年前世界變得更綠色了,衛星資料顯示中國和印度的行動主導了地球變綠.據統計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區在去年植樹造林的相關數據.(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據上述數據分別寫出在這十個地區中人工造林面積與造林總面積的比值最大和最小的地區;(2)在這十個地區中,任選一個地區,求該地區新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區中,從退化林修復面積超過一萬公頃的地區中,任選兩個地區,記X為這兩個地區中退化林修復面積超過六萬公頃的地區的個數,求X的分布列及數學期望.19.(12分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:組別男235151812女051010713(1)若規定問卷得分不低于70分的市民稱為“環保關注者”,請完成答題卡中的列聯表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環保達人”.視頻率為概率.①在我市所有“環保達人”中,隨機抽取3人,求抽取的3人中,既有男“環保達人”又有女“環保達人”的概率;②為了鼓勵市民關注環保,針對此次的調查制定了如下獎勵方案:“環保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求的分布列及數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函數.(1)求的單調區間;(2)討論零點的個數.21.(12分)在綜合素質評價的某個維度的測評中,依據評分細則,學生之間相互打分,最終將所有的數據合成一個分數,滿分100分,按照大于或等于80分的為優秀,小于80分的為合格,為了解學生的在該維度的測評結果,在畢業班中隨機抽出一個班的數據.該班共有60名學生,得到如下的列聯表:優秀合格總計男生6女生18合計60已知在該班隨機抽取1人測評結果為優秀的概率為.(1)完成上面的列聯表;(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結果有關系?(3)現在如果想了解全校學生在該維度的表現情況,采取簡單隨機抽樣方式在全校學生中抽取少數一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02422.(10分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.2、A【解析】
求出,對分類討論,求出單調區間和極值點,結合三次函數的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數的零點、導數的應用,考查分類討論思想,熟練掌握函數圖像和性質是解題的關鍵,屬于中檔題.3、A【解析】
畫出不等式組表示的區域,求出其面積,再得到在區域內的面積,根據幾何概型的公式,得到答案.【詳解】畫出所表示的區域,易知,所以的面積為,滿足不等式的點,在區域內是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.4、C【解析】
先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.5、C【解析】
根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.6、A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.7、C【解析】
根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題8、B【解析】
由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.9、C【解析】
首先根據垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.10、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.11、D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.12、D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數項的值.【詳解】的二項展開式的中,只有第5項的二項式系數最大,,通項公式為,令,求得,可得二項展開式常數項等于,故答案為1.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.14、【解析】
設等比數列的公比為,根據題意求出和的值,進而可求得和的值,利用等比數列求和公式可求得的值.【詳解】由等比數列的性質可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【點睛】本題考查等比數列求和,解答的關鍵就是等比數列的公比,考查計算能力,屬于基礎題.15、①②③【解析】
由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.16、5【解析】
根據題意,畫出圖像,數形結合,將目標轉化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區域如圖陰影區域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規劃問題,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時,即是的中點建立空間直角坐標系,求出與平面的法向量利用公式即可求得結果.【詳解】(1)設AC的中點為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當OM最短時,即M是PA的中點時,最大.由平面ABC,,,,于是以OC,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標系,則,,設平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面成角問題,借助空間向量是解決線面成角問題的關鍵,難度一般.18、(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海省;(2);(3)分布列見詳解,數學期望為【解析】
(1)通過數據的觀察以及計算人工造林面積與造林總面積比值,可得結果.(2)通過數據的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區個數,然后可得結果.(3)計算退化林修復面積超過一萬公頃的地區中選兩個地區總數,退化林修復面積超過六萬公頃的地區的個數為,列出所有取值并計算相應概率,然后可得結果.【詳解】(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海省.(2)記事件A:在這十個地區中,任選一個地區,該地區新封山育林面積占總面積的比值超過根據數據可知:青海地區人工造林面積占總面積比超過,則(3)退化林修復面積超過一萬公頃有6個地區:內蒙、河北、河南、重慶、陜西、新疆,其中退化林修復面積超過六萬公頃有3個地區:內蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機變量X的分布列如下:【點睛】本題考查數據的處理以及離散型隨機變量的分布列與數學期望,審清題意,細心計算,屬基礎題.19、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據題目所給的數據可求2×2列聯表即可;計算K的觀測值K2,對照題目中的表格,得出統計結論.(2)由相互獨立事件的概率可得男“環保達人”又有女“環保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數學期望E(X)即可;【詳解】(1)由圖中表格可得列聯表如下:非“環保關注者”是“環保關注者”合計男104555女153045合計2575100將列聯表中的數據代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認為是否為“環保關注者”與性別有關.(2)視頻率為概率,用戶為男“環保達人”的概率為.為女“環保達人”的概率為,①抽取的3名用戶中既有男“環保達人”又有女“環保達人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應用問題,考查了概率分布列和期望,計算能力的應用問題,是中檔題目.20、(1)見解析(2)見解析【解析】
(1)求導后分析導函數的正負再判斷單調性即可.(2),有零點等價于方程實數根,再換元將原方程轉化為,再求導分析的圖像數形結合求解即可.【詳解】(1)的定義域為,,當時,,所以在單調遞減;當時,,所以在單調遞增,所以的減區間為,增區間為.(2),有零點等價于方程實數根,令則原方程轉化為,令,.令,,∴,,,,,當時,,當時,.如圖可知①當時,有唯一零點,即有唯一零點;②當時,有兩個零點,即有兩個零點;③當時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新規定:實習生也需簽訂勞動合同
- 2025【范本】房屋租賃合同協議
- 2025簡易個人借款合同書范本下載
- 2025體育賽事組委會責任保險合同樣本
- 2025墓地使用權轉讓合同
- 2025項目環境監測評估驗收技術服務合同
- 2025房屋買賣合同模板2
- 2025交通運輸合同協議
- 2025解除租賃合同協議書
- 西北狼聯盟2025屆高三仿真模擬(二)歷史試題試卷含解析
- 2024年職業病防治考試題庫附答案(版)
- GB/T 4706.53-2024家用和類似用途電器的安全第53部分:坐便器的特殊要求
- 《智能網聯汽車用攝像頭硬件性能要求及試驗方法》編制說明
- 2024年3月ITSMS信息技術服務管理體系基礎(真題卷)
- 節能評審和節能評估文件編制費用收費標準
- 2023-2024年《勞務勞動合同樣本范本書電子版模板》
- 中國居民口腔健康狀況第四次中國口腔健康流行病學調查報告
- MOOC 數據挖掘-國防科技大學 中國大學慕課答案
- 中藥注射劑合理使用培訓
- 第13課+清前中期的興盛與危機【中職專用】《中國歷史》(高教版2023基礎模塊)
- 2024年國家糧食和物資儲備局直屬事業單位招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論