




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省棗莊十八中2025屆高三下學期第三階段測試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若,則()A. B. C. D.2.已知函數,當時,的取值范圍為,則實數m的取值范圍是()A. B. C. D.3.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.5.在正方體中,E是棱的中點,F是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值6.已知集合,則=()A. B. C. D.7.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.8.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.9.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.10.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.11.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.12.已知集合,,若,則實數的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列{an}的前n項和為Sn,若a214.展開式中的系數為_________.(用數字做答)15.在三棱錐中,三條側棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.16.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若恒成立,求的取值范圍;(2)設函數的極值點為,當變化時,點構成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.18.(12分)已知關于的不等式解集為().(1)求正數的值;(2)設,且,求證:.19.(12分)已知函數(1)求函數在處的切線方程(2)設函數,對于任意,恒成立,求的取值范圍.20.(12分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.21.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.22.(10分)已知數列的前項和和通項滿足.(1)求數列的通項公式;(2)已知數列中,,,求數列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.2、C【解析】
求導分析函數在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數在單調遞增,在單調遞減.∴函數在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數分析函數值域的方法,考查了分段函數的性質,屬于難題.3、A【解析】
將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.4、B【解析】
由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.5、C【解析】
分別根據線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.6、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.7、A【解析】
直線的方程為,令和雙曲線方程聯立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.8、C【解析】
首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.9、A【解析】
設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.10、D【解析】
根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.11、B【解析】
結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.12、D【解析】
由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】試題分析:∵a2考點:等比數列性質及求和公式14、210【解析】
轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數為故答案為:210【點睛】本題考查了二項式系數的求解,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.15、【解析】
設,可表示出,由三棱錐性質得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關鍵是掌握三棱錐的性質:三條側棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側棱的平方和.16、【解析】
由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質的應用,考查分類討論思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進而構造函數,求導可判斷出的單調性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構造函數,分、和三種情況,分別證明函數在上有唯一的零點,即可證明結論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調遞增,又,時,;時,,即時,;時,,時,單調遞減;時,單調遞增,時,取最小值,.(2)證明:由,令,由,結合二次函數性質可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當時,恒成立,在上單調遞增.,,,存在滿足時,使得.又單調遞增,所以為唯一解.②當時,二次函數,滿足,則恒成立,在上單調遞增.,,存在使得,又在上單調遞增,為唯一解.③當時,二次函數,滿足,此時有兩個不同的解,不妨設,,,列表如下:00↗極大值↘極小值↗由表可知,當時,的極大值為.,,,,,..下面來證明,構造函數,則,當時,,此時單調遞增,,時,,,故成立.,存在,使得.又在單調遞增,為唯一解.所以,對任意,方程有唯一解,即過原點任意的直線與曲線有且僅有一個公共點.【點睛】本題考查利用導數研究函數單調性的應用,考查不等式恒成立問題,考查利用單調性研究圖象交點問題,考查學生的計算求解能力與推理論證能力,屬于難題.18、(1)1;(2)證明見解析.【解析】
(1)將不等式化為,求解得出,根據解集確定正數的值;(2)利用基本不等式以及不等式的性質,得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.【點睛】本題主要考查了求絕對值不等式中參數的范圍以及基本不等式的應用,屬于中檔題.19、(1);(2)【解析】
(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當時求出,的解,得到單調區間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設由于在單調遞增同時時,,時,,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導數的幾何意義、不等式恒成立問題,應用導數求最值是解題的關鍵,考查邏輯推理、數學計算能力,屬于中檔題.20、(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數列是等差數列,設數列的公差為,由可得,因為成等比數列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 追責權利協議書
- 男士離婚協議書
- 美妝學徒協議書
- 廣告帶制作合同協議書
- 小產權買賣合同協議書
- 舊改房買賣合同協議書
- 蘋果充電協議書
- 空調經銷協議書
- 房屋翻改造合同協議書
- 合建自建房合同協議書
- 幼兒園中班科學活動公開課《飛機本領大》課件
- 體育競彩考試題及答案
- 中國日用器皿行業市場前景預測及投資價值評估分析報告
- 2025年企業人力資源管理師考試真題及答案
- 2025-2030年中國玻璃容器行業市場發展趨勢與前景展望戰略分析報告
- 山東省濟南市2025屆高三三模化學試卷(含答案)
- 延長縣黑家堡共大灘防洪工程環境影響評價報告書
- 2022年新高考全國I卷數學真題
- 一氧化氮和二氧化氮檢測儀校準規范
- 2025中考英語解題技巧專題10.閱讀表達解題技巧(學生版+解析)
- 山西、陜西、寧夏、青海四省區普通高中新高考2025屆高三質量檢測 數學試題(含解析)
評論
0/150
提交評論