




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省名校2025年高三下學期5月學情調研考試數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.3.已知函數在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、4.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.5.給出個數,,,,,,其規律是:第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,以此類推,要計算這個數的和.現已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;6.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內可填寫的條件是()A. B. C. D.7.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,8.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.89.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.411.已知函數,則的最小值為()A. B. C. D.12.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.14.設是等比數列的前項的和,成等差數列,則的值為_____.15.已知全集,,則________.16.若x,y均為正數,且,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,求函數在上的值域;(Ⅱ)若函數在上單調遞減,求實數的取值范圍.18.(12分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.19.(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.20.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.22.(10分)已知()過點,且當時,函數取得最大值1.(1)將函數的圖象向右平移個單位得到函數,求函數的表達式;(2)在(1)的條件下,函數,求在上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.2、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數形結合思想易得.3、A【解析】
設,利用導數和題設條件,得到,得出函數在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數研究函數的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數,利用新函數的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.4、B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.5、A【解析】
要計算這個數的和,這就需要循環50次,這樣可以確定判斷語句①,根據累加最的變化規律可以確定語句②.【詳解】因為計算這個數的和,循環變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環結構,正確讀懂題意是解本題的關鍵.6、C【解析】
根據循環結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內容.【詳解】根據循環程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內容,但符合條件框內容,結合選項可知C為正確選項,故選:C.【點睛】本題考查了循環結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.7、A【解析】
設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.8、B【解析】
根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.9、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.10、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.11、C【解析】
利用三角恒等變換化簡三角函數為標準正弦型三角函數,即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數,以及求三角函數的最值,屬綜合基礎題.12、A【解析】
設所求切線的方程為,聯立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數的切線方程的求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.14、2【解析】
設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.15、【解析】
利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.16、4【解析】
由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數函數的單調性即可求解.(Ⅱ)根據對數函數的單調性可得在上單調遞增,再利用二次函數的圖像與性質可得解不等式組即可求解.【詳解】(Ⅰ)當時,,此時函數的定義域為.因為函數的最小值為.最大值為,故函數在上的值域為;(Ⅱ)因為函數在上單調遞減,故在上單調遞增,則解得,綜上所述,實數的取值范圍.【點睛】本題主要考查了利用對數函數的單調性求值域、利用對數型函數的單調區間求參數的取值范圍以及二次函數的圖像與性質,屬于中檔題.18、(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數列的通項公式,進一步驗證時,是否為數列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數列為等差數列,設數列的公差為,再根據不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數列中的項,故數列不是為“數列”(2)因為數列是公差為的等差數列,所以.因為數列為“數列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數列中的項.②若,則.此時,當時,不為正整數,所以不符合題意.綜上,.(3)由題意,所以,又因為,且數列為“數列”,所以,即,所以數列為等差數列.設數列的公差為,則有,由,得,整理得,①.②若,取正整數,則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據②式可得,所以.又,所以.經檢驗當時,①②兩式對應任意恒成立,所以數列的通項公式為.【點睛】本題考查數列新定義題、等差數列的通項公式,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.19、(1)(2)【解析】
(1)設,根據直線的斜率公式即可求解;(2)設直線的方程為,聯立直線與拋物線方程,由韋達定理得,,結合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設,因為,即直線的斜率為1.(2)顯然直線的斜率存在,設直線的方程為.聯立方程組,可得則,令,則則當時,;當且僅當,即時,解得時,取“=”號,當時,;當時,綜上所述,當時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關系,換元法,均值不等式,考查了運算能力,屬于難題.20、(1);(2)4【解析】
(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,∵,∴∴.【點睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.21、(1);(2)不存在.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同管理規范與合同履行監控
- 廠房出售及配套設施租賃及改造合同
- 金融服務采購合同英文模板
- 工業園區標準廠房租賃管理合同
- 車禍受害者心理援助與賠償合同
- 草原休閑農業土地租賃與鄉村旅游合同
- 智能化車輛維修中心承包運營合同
- 城市綜合體餐飲區租賃合同示范文本
- 車牌租賃附帶車輛清潔維護服務合同
- 汽車零部件購銷合同終止及售后服務協議
- 機械通氣基礎知識與常見模式
- 家具借款借條模板
- 預防肥胖幼兒園
- 淚道置管的護理課件
- 造影劑腦病護理查房課件
- 電力鐵塔制造培訓資料
- 采購詢價單模板
- 聯合體內部協議
- 海南省近5年中考語文作文真題及模擬題匯編(含參考例文)
- 《數字經濟概論》補充習題196道及答案 謝衛紅
- 價值流PSI拉動暢流
評論
0/150
提交評論