山東省乳山一中2025屆高三3月周日測試(1)數學試題_第1頁
山東省乳山一中2025屆高三3月周日測試(1)數學試題_第2頁
山東省乳山一中2025屆高三3月周日測試(1)數學試題_第3頁
山東省乳山一中2025屆高三3月周日測試(1)數學試題_第4頁
山東省乳山一中2025屆高三3月周日測試(1)數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省乳山一中2025屆高三3月周日測試(1)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.2.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立3.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.4.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.65.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.6.關于函數在區間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減7.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.8.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等9.已知集合,,則()A. B.C. D.10.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④11.已知非零向量,滿足,,則與的夾角為()A. B. C. D.12.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.15.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.16.設平面向量與的夾角為,且,,則的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.18.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為(為參數),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數方程;(2)已知直線與曲線交于,滿足為的中點,求.19.(12分)數列的前項和為,且.數列滿足,其前項和為.(1)求數列與的通項公式;(2)設,求數列的前項和.20.(12分)在世界讀書日期間,某地區調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮居民農村居民合計經常閱讀10030不經常閱讀合計200(2)調查組從該樣本的城鎮居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發言,求被選中的2位居民都是經常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)在中,內角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.22.(10分)已知函數.(1)若,,求函數的單調區間;(2)時,若對一切恒成立,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.2.C【解析】

寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.3.C【解析】

易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.4.B【解析】

由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.5.A【解析】

本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.6.C【解析】

先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.7.C【解析】

利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.8.B【解析】

由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.9.A【解析】

根據對數性質可知,再根據集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數的性質比較大小,集合交集的簡單運算,屬于基礎題.10.D【解析】

根據面面垂直的判定定理可判斷①;根據空間面面平行的判定定理可判斷②;根據線面平行的判定定理可判斷③;根據面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.11.B【解析】

由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.12.D【解析】

設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.14.【解析】

將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15.【解析】

設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.16.【解析】

根據已知條件計算出,結合得出,利用基本不等式可得出的取值范圍,利用平面向量的數量積公式可求得的取值范圍,進而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)根據題意,設直線方程為,聯立方程,根據拋物線的定義即可得到結論;(2)根據題意,設的方程為,聯立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯立,得,根據拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,,設的方程為,與聯立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.【點睛】本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題.18.(1),;(2).【解析】

(1)由曲線的參數方程消去參數可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經過的點求出直線的參數方程即可;(2)將直線的參數方程,代入曲線的普通方程,整理得,利用韋達定理,根據為的中點,解出即可.【詳解】(1)由(為參數)消去參數,可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標方程為,直線經過點,且傾斜角為,直線的參數方程:(為參數,).(2)設對應的參數分別為,.將直線的參數方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數方程與極坐標方程之間的互化以及直線參數方程的應用,考查了計算能力,屬于中檔題.19.(1),;(2).【解析】

(1)令可求得的值,令,由得出,兩式相減可推導出數列為等比數列,確定該數列的公比,利用等比數列的通項公式可求得數列的通項公式,再利用對數的運算性質可得出數列的通項公式;(2)運用等差數列的求和公式,運用數列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數列是首項為,公比為的等比數列,.;(2)由(1)知數列是首項為,公差為的等差數列,.,.所以.【點睛】本題考查數列的遞推式的運用,注意結合等比數列的定義和通項公式,考查數列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.20.(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】

(1)根據題中數據得到列聯表,然后計算出,與臨界值表中的數據對照后可得結論;(2)由題意得概率為古典概型,根據古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)在城鎮居民140人中,經常閱讀的有100人,不經常閱讀的有40人.采取分層抽樣抽取7人,則其中經常閱讀的有5人,記為、、、、;不經常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法是解決本題的關鍵,考查學生的計算能力.對于古典概型,要求事件總數是可數的,滿足條件的事件個數可數,使得滿足條件的事件個數除以總的事件個數即可,屬于中檔題.21.(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論