




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省淮北師范大學附中高三下學期第一次教學診斷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.2.已知定義在上的偶函數,當時,,設,則()A. B. C. D.3.已知滿足,則()A. B. C. D.4.國務院發布《關于進一步調整優化結構、提高教育經費使用效益的意見》中提出,要優先落實教育投入.某研究機構統計了年至年國家財政性教育經費投入情況及其在中的占比數據,并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經費的支出持續增長B.年以來,國家財政性教育經費的支出占比例持續年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經費的支出增長最多的年份是年5.已知為虛數單位,若復數滿足,則()A. B. C. D.6.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a7.函數y=sin2x的圖象可能是A. B.C. D.8.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.09.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.10.復數的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.寧波古圣王陽明的《傳習錄》專門講過易經八卦圖,下圖是易經八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.12.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數有且只有一個零點,則實數的取值范圍為__________.14.在區間內任意取一個數,則恰好為非負數的概率是________.15.已知函數的定義域為R,導函數為,若,且,則滿足的x的取值范圍為______.16.若,則的展開式中含的項的系數為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.18.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值19.(12分)設數列的前n項和滿足,,,(1)證明:數列是等差數列,并求其通項公式﹔(2)設,求證:.20.(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當的面積最小時,求直線的斜率.附:多項式因式分解公式:21.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.22.(10分)在創建“全國文明衛生城”過程中,運城市“創城辦”為了調查市民對創城工作的了解情況,進行了一次創城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統計結果如表所示:.組別頻數(1)由頻數分布表可以大致認為,此次問卷調查的得分似為這人得分的平均值(同一組中的數據用該組區間的中點值作代表),利用該正態分布,求;(2)在(1)的條件下,“創城辦”為此次參加問卷調查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數學期望.附:參考數據與公式:,若,則,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.2.B【解析】
根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.3.A【解析】
利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.4.C【解析】
觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統計圖表,正確認識圖表是解題基礎.5.A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.6.C【解析】
兩復數相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數的概念,屬于基礎題.7.D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環往復.8.C【解析】
根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.9.A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.10.A【解析】
試題分析:由題意可得:.共軛復數為,故選A.考點:1.復數的除法運算;2.以及復平面上的點與復數的關系11.B【解析】
根據古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數,再找出這兩卦的六根線中恰有四根陰線的基本事件數,代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數種,這兩卦的六根線中恰有四根陰線的基本事件數有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運算求解的能力,屬于基礎題.12.D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
當時,轉化條件得有唯一實數根,令,通過求導得到的單調性后數形結合即可得解.【詳解】當時,,故不是函數的零點;當時,即,令,,,當時,;當時,,的單調減區間為,增區間為,又,可作出的草圖,如圖:則要使有唯一實數根,則.故答案為:.【點睛】本題考查了導數的應用,考查了轉化化歸思想和數形結合思想,屬于難題.14.【解析】
先分析非負數對應的區間長度,然后根據幾何概型中的長度模型,即可求解出“恰好為非負數”的概率.【詳解】當是非負數時,,區間長度是,又因為對應的區間長度是,所以“恰好為非負數”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區間長度.15.【解析】
構造函數,再根據條件確定為奇函數且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數為奇函數,故函數在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數奇偶性、單調性以及利用函數性質解不等式,考查綜合分析求解能力,屬中檔題.16.【解析】
首先根據定積分的應用求出的值,進一步利用二項式的展開式的應用求出結果.【詳解】,根據二項式展開式通項:,令,解得,所以含的項的系數.故答案為:【點睛】本題考查定積分,二項式的展開式的應用,主要考查學生的運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)證明見解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.18.(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數列,由此即可求出答案;(2),分類討論,當時,,作商法可得數列為遞增數列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數的最小值.【點睛】本題主要考查地推數列的應用,屬于中檔題.19.(1)證明見解析,;(2)證明見解析【解析】
(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數列是等差數列,又,∴,,公差,所以.(II).【點睛】本題考查由與的關系求通項以及裂項相消法求數列的和,考查學生的計算能力,是一道容易題.20.(1)證明見解析(2)【解析】
(1)由得令可得,進而得到,同理,利用數量積坐標計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標為.聯立方程,消去后整理為有,可得,,.可得點的坐標為.當時,可求得點的坐標為,,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知①因為時.由(1)知,由函數單調遞增,可得此時.②當時,由(1)知令由,故當時,,此時函數單調遞增:當時,,此時函數單調遞減,又由,故函數的最小值,函數取最小值時,可求得.由①②知,若點在軸上方,當的面積最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關系,涉及到分類討論求函數的最值,考查學生的運算求解能力,是一道難題.21.(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛股份及車輛變更一體化合同樣本
- 企業財務信息化建設顧問服務合同
- 二手車抵押融資合同范本
- 股權代持與風險控制及合規管理協議
- 農產品品牌塑造與營銷策劃合同
- 公共停車場車位使用權出讓及維護管理合同
- 住宅小區場地租賃合同終止與物業管理權移交協議
- 口腔患者資料管理制度
- 商業公司流程管理制度
- 商場消防安全管理制度
- 醫美機構醫廢管理制度
- 深圳2025年深圳市住房公積金管理中心員額人員招聘8人筆試歷年參考題庫附帶答案詳解
- 委托投資協議范本
- 供配電技術 課件 項目7、8 供配電系統的保護、電氣設備的防雷和接地
- 安徽省合肥市2025屆高三下學期5月教學質量檢測(三模)英語試卷(含音頻)
- 貴州國企招聘2025貴州烏江煤層氣勘探開發有限公司招聘16人筆試參考題庫附帶答案詳解
- 放射科出科試題 及答案
- 炊事員培訓試題及答案
- 辦公大樓保安試題及答案
- 全國100所名校2025屆高考沖刺模擬英語試題含答案
- 特種設備重大事故隱患判定準則
評論
0/150
提交評論