




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省大慶一中2025屆高三下學期期中考試數學試題(文解析)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.3.復數(為虛數單位),則的共軛復數在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.75.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙7.已知函數的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.8.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.69.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件10.已知與之間的一組數據:12343.24.87.5若關于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.511.設全集,集合,則=()A. B. C. D.12.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.設,若關于的方程有實數解,則實數的取值范圍_____.14.若的展開式中各項系數之和為32,則展開式中x的系數為_____15.在直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.16.若關于的不等式在上恒成立,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線是曲線的切線.(1)求函數的解析式,(2)若,證明:對于任意,有且僅有一個零點.18.(12分)如圖,在三棱錐中,,,側面為等邊三角形,側棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.19.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.20.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統一高考科目成績和自主選擇的3門普通高中學業水平等級考試科目成績組成,總分為750分.其中,統一高考科目為語文、數學、外語,自主選擇的3門普通高中學業水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績為67.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68221.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現從年齡在,,內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內的人數,求的分布列和數學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在的概率為.當最大時,求的值.22.(10分)已知函數(1)解不等式;(2)若均為正實數,且滿足,為的最小值,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.2.C【解析】
在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.3.C【解析】
由復數除法求出,寫出共軛復數,寫出共軛復數對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數的除法運算,共軛復數的概念,復數的幾何意義.掌握復數除法法則是解題關鍵.4.D【解析】
利用已知條件,表示出向量,然后求解向量的數量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數量積運算,關鍵是利用基向量表示所求向量.5.A【解析】
作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.6.A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.7.D【解析】
根據對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數研究的單調性從而得到的圖象;由直線恒過定點,通過數形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據直線與曲線交點個數確定參數范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數的問題,通過確定直線恒過的定點,采用數形結合的方式來進行求解.8.D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.9.A【解析】
根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l∥α”是“l⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題10.D【解析】
利用表格中的數據,可求解得到代入回歸方程,可得,再結合表格數據,即得解.【詳解】利用表格中數據,可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.11.A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.12.D【解析】
整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求出,從而得函數在區間上為增函數;在區間為減函數.即可得的最大值為,令,得函數取得最小值,由有實數解,,進而得實數的取值范圍.【詳解】解:,當時,;當時,;函數在區間上為增函數;在區間為減函數.所以的最大值為,令,所以當時,函數取得最小值,又因為方程有實數解,那么,即,所以實數的取值范圍是:.故答案為:【點睛】本題考查了函數的單調性,函數的最值問題,導數的應用,屬于中檔題.14.2025【解析】
利用賦值法,結合展開式中各項系數之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數.【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數之和,考查二項式展開式指定項系數的求法,屬于基礎題.15.(1),;(2),.【解析】
(1)利用代入消參的方法即可將兩個參數方程轉化為普通方程;(2)利用參數方程,結合點到直線的距離公式,將問題轉化為求解二次函數最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數方程轉化為普通方程,以及利用參數方程求距離的最值問題,屬中檔題.16.【解析】
分類討論,時不合題意;時求導,求出函數的單調區間,得到在上的最小值,利用不等式恒成立轉化為函數最小值,化簡得,構造放縮函數對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區間和上單調遞減.因為,且在區間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數)對任意的恒成立,求參數的取值范圍.利用導數解決此類問題可以運用分離參數法;如果無法分離參數,可以考慮對參數或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數與判別式的方法(,或,)求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)對函數求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數求導得,對分和兩種情況討論,即可得答案.【詳解】(1)根據題意,,設直線與曲線相切于點.根據題意,可得,解之得,所以.(2)由(1)可知,則當x充分小時,當x充分大時,∴至少有一個零點.∵,①若,則,在上單調遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調遞增,在上單調遞減,在上單調遞增.∴極大值為.,又,∴在(0,16)上單調遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【點睛】本題考查導數的幾何意義的運用、利用導數證明函數的零點個數,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.18.(1)見解析;(2).【解析】
(1)設中點為,連接、,利用等腰三角形三線合一的性質得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結果.【詳解】(1)設中點為,連接、,因為,所以.又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因為,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關鍵,考查推理能力與計算能力,屬于中等題.19.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】
(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數的函數的單調性的討論,不等式恒成立時,求解參數的范圍,屬于難度題.20.(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據原始分數分布區間及轉換分區間,結合所給示例,即可求得小明轉換后的物理成績;根據正態分布滿足N60,122(2)根據各等級人數所占比例可知在區間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績為83分;(ii)因為物理考試原始分基本服從正態分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 4223-2022省級中藥飲片炮制規范編制技術要求
- DB32/T 4201-2022放射治療擺位數據收集技術規范
- DB32/T 3941-2020建筑工程物證司法鑒定技術規程
- DB32/T 3830-2020未成年人救助保護機構服務規范
- DB32/T 3653-2019‘紫金紅3號’油桃生產技術規程
- DB32/T 3545.2-2020血液凈化治療技術管理第2部分:血液透析水處理系統質量控制規范
- DB32/T 3514.3-2019電子政務外網建設規范第3部分:IPv4域名規劃
- DB31/T 855-2014公共汽(電)車動態信息發布服務基本技術要求
- DB31/T 668.6-2012節能技術改造及合同能源管理項目節能量審核與計算方法第6部分:爐窯系統
- DB31/T 615-2012冷卻塔循環水系統富余能量回收利用的評價方法
- 4.1自由擴散和協助擴散課件高一上學期生物人教版必修1
- 主動脈夾層完整版課件
- 《飛向太空的航程》名師課件
- 科學普及講座模板
- 國開《Windows網絡操作系統管理》形考任務5-配置DNS服務實訓
- 團體標準組織綜合績效評價指標體系
- DL∕T 995-2016 繼電保護和電網安全自動裝置檢驗規程
- 2024年廣東省廣州市市中考化學試卷真題(含答案)
- 2023-2024學年廣東省珠海市八年級(下)期末數學試卷(含答案)
- 清華大學2024年強基計劃數學試題(解析)
- 四川省德陽市2023-2024學年七年級下學期期末語文試題
評論
0/150
提交評論