2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題_第1頁
2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題_第2頁
2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題_第3頁
2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題_第4頁
2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省宣城市郎溪縣七校高三綜合能力測試(二)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.不等式組表示的平面區域為,則()A., B.,C., D.,2.已知,滿足條件(為常數),若目標函數的最大值為9,則()A. B. C. D.3.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.4.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.905.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.6.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.7.函數的圖象可能為()A. B.C. D.8.已知是虛數單位,則復數()A. B. C.2 D.9.設集合,,若,則的取值范圍是()A. B. C. D.10.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.11.已知,,則()A. B. C. D.12.已知復數(為虛數單位,),則在復平面內對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,則____14.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.15.已知函數,則不等式的解集為____________.16.若非零向量,滿足,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態度的人數為X,求X的分布列及數學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63518.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.19.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.20.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.21.(12分)某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02422.(10分)已知的內角的對邊分別為,且滿足.(1)求角的大小;(2)若的面積為,求的周長的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.2.B【解析】

由目標函數的最大值為9,我們可以畫出滿足條件件為常數)的可行域,根據目標函數的解析式形式,分析取得最優解的點的坐標,然后根據分析列出一個含參數的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數)可行域如下圖:由于目標函數的最大值為9,可得直線與直線的交點,使目標函數取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數,我們可以先畫出不含參數的幾個不等式對應的平面區域,分析取得最優解是哪兩條直線的交點,然后得到一個含有參數的方程(組,代入另一條直線方程,消去,后,即可求出參數的值.3.D【解析】

根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.4.A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.5.B【解析】

根據在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.6.D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設正方體的棱長為,則,∴.

取,連接,則共面,在中,設到的距離為,

設到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.7.C【解析】

先根據是奇函數,排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數,故排除A,B,又,故選:C【點睛】本題主要考查函數的圖象,還考查了理解辨析的能力,屬于基礎題.8.A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.9.C【解析】

由得出,利用集合的包含關系可得出實數的取值范圍.【詳解】,且,,.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關系求參數,考查計算能力,屬于基礎題.10.B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.11.D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.12.B【解析】

分別比較復數的實部、虛部與0的大小關系,可判斷出在復平面內對應的點所在的象限.【詳解】因為時,所以,,所以復數在復平面內對應的點位于第二象限.故選:B.【點睛】本題考查復數的幾何意義,考查學生的計算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.14.156【解析】

先考慮每班安排的老師人數,然后計算出對應的方案數,再考慮劉老師和王老師在同一班級的方案數,兩者作差即可得到不同安排的方案數.【詳解】安排6名老師到4個班則每班老師人數為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應用,難度一般.對于分組的問題,首先確定每組的數量,對于其中特殊元素,可通過“正難則反”的思想進行分析.15.【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.16.1【解析】

根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】

(1)根據表格及同意父母生“二孩”占60%可求出,,根據公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態度的學生的頻率為,即從學生中任意抽取到一名持“同意”態度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.18.(1)見解析;(2)【解析】

(1)設為中點,連結,先證明,可證得,假設不為線段的中點,可得平面,這與矛盾,即得證;(2)以為原點,以分別為軸建立空間直角坐標系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設為中點,連結.∴,,又平面,平面,∴.又分別為中點,,又,∴.假設不為線段的中點,則與是平面內內的相交直線,從而平面,這與矛盾,所以為線段的中點.(2)以為原點,由條件面面,∴,以分別為軸建立空間直角坐標系,則,,,,,,.設平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點睛】本題考查了立體幾何與空間向量綜合,考查了學生邏輯推理,空間想象,數學運算的能力,屬于中檔題.19.(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【點睛】本題考查正余弦定理在解三角形中的應用,考查學生的計算能力,是一道中檔題.20.(1)(2)【解析】

(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數恒等變換的應用,可得,根據題意,得到,解得,得到函數的解析式,進而求得的值,利用三角函數恒等變換的應用可求的值.【詳解】(1)由題意,根據正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.21.(1);(2)列聯表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數,填寫列聯表,計算觀測值,對照臨界值得出結論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數學期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數為(人),填表如下:晉級成功晉級失敗合計男163450女94150合計2575100假設“晉級成功”與性別無關,根據上表數據代入公式可得,所以有超過的把握認為“晉級

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論