2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷_第1頁
2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷_第2頁
2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷_第3頁
2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷_第4頁
2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省福州三校聯盟高三第一次質量檢測試題(一模)數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.402.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數據在上的頻率為,則估計樣本在、內的數據個數共有()A. B. C. D.3.用電腦每次可以從區間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續生成3個實數,則這3個實數都小于的概率為()A. B. C. D.4.三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為()A. B. C. D.5.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.6.如圖所示,網格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.7.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.8.設是虛數單位,則()A. B. C. D.9.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或10.函數在上的圖象大致為()A. B. C. D.11.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.12.若的二項展開式中的系數是40,則正整數的值為()A.4 B.5 C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前項滿足,則______.14.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.15.已知在等差數列中,,,前n項和為,則________.16.設復數滿足,其中是虛數單位,若是的共軛復數,則____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數有兩個零點.(1)求的取值范圍;(2)是否存在實數,對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.18.(12分)已知曲線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求和的普通方程;(2)過坐標原點作直線交曲線于點(異于),交曲線于點,求的最小值.19.(12分)在開展學習強國的活動中,某校高三數學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數;(2)記X為選出的4名選手中女教師的人數,求X的概率分布和數學期望.20.(12分)已知函數,(1)求函數的單調區間;(2)當時,判斷函數,()有幾個零點,并證明你的結論;(3)設函數,若函數在為增函數,求實數的取值范圍.21.(12分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.22.(10分)已知等差數列滿足,.(l)求等差數列的通項公式;(2)設,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.2.B【解析】

計算出樣本在的數據個數,再減去樣本在的數據個數即可得出結果.【詳解】由題意可知,樣本在的數據個數為,樣本在的數據個數為,因此,樣本在、內的數據個數為.故選:B.【點睛】本題考查利用頻數分布表計算頻數,要理解頻數、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.3.C【解析】

由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發生的概率計算即可.【詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發生的概率,考查學生基本的計算能力,是一道容易題.4.A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區域和所求事件構成的區域轉化為幾何圖形,并加以度量.(1)一般地,一個連續變量可建立與長度有關的幾何概型,只需把這個變量放在數軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續變量來描述,則可用這三個變量組成的有序數組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.5.D【解析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.6.B【解析】

根據三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點睛】本題考查了幾何體的三視圖問題,解題的關鍵是要能由三視圖解析出原幾何體,從而解決問題.7.B【解析】

由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.8.A【解析】

利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.【點睛】本題考查復數的乘法運算,考查計算能力,屬于基礎題.9.D【解析】

根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得

,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.10.C【解析】

根據函數的奇偶性及函數在時的符號,即可求解.【詳解】由可知函數為奇函數.所以函數圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數的奇偶性的判定及奇偶函數圖像的對稱性,屬于中檔題.11.D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。12.B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知寫出用代替的等式,兩式相減后可得結論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.【點睛】本題考查求數列通項公式,由已知條件.類比已知求的解題方法求解.14.【解析】

根據題意求出點N的坐標,將其代入橢圓的方程,求出參數m的值,再根據離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點睛】本題考查了橢圓的標準方程及幾何性質,屬于中檔題.15.39【解析】

設等差數列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數列公差為d,首項為,根據題意可得,解得,所以.故答案為:39【點睛】本題考查等差數列的基本量計算以及前n項和的公式,屬于基礎題.16.【解析】

由于,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)對求導,對參數進行分類討論,根據函數單調性即可求得.(2)先根據,得,再根據零點解得,轉化不等式得,令,化簡得,因此,,最后根據導數研究對應函數單調性,確定對應函數最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數在單調遞增,在單調遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數在單調遞減,∴,與不符;若,則時,,即函數在單調遞減,∴,與式不符;若,解得,此時恒成立,,即函數在單調遞增,又,∴時,;時,符合式,綜上,存在唯一實數符合題意.【點睛】利用導數研究不等式恒成立或存在型問題,首先要構造函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造函數,直接把問題轉化為函數的最值問題.18.(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】

(1)消去曲線參數方程中的參數,求得和的普通方程.(2)設出過原點的直線的極坐標方程,代入曲線的極坐標方程,求得的表達式,結合三角函數值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設過原點的直線的極坐標方程為;由得,所以曲線的極坐標方程為在曲線中,.由得曲線的極坐標方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【點睛】本小題主要考查參數方程化為普通方程,考查直角坐標方程化為極坐標方程,考查極坐標系下距離的有關計算,屬于中檔題.19.(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數;(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.20.(1)單調增區間,單調減區間為,;(2)有2個零點,證明見解析;(3)【解析】

對函數求導,利用導數的正負判斷函數的單調區間即可;函數有2個零點.根據函數的零點存在性定理即可證明;記函數,求導后利用單調性求得,由零點存在性定理及單調性知存在唯一的,使,求得為分段函數,求導后分情況討論:①當時,利用函數的單調性將問題轉化為的問題;②當時,當時,在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數的單調增區間為,單調減區間為,.(2)函數有2個零點.證明如下:因為時,所以,因為,所以在恒成立,在上單調遞增,由,,且在上單調遞增且連續知,函數在上僅有一個零點,由(1)可得時,,即,故時,,所以,由得,平方得,所以,因為,所以在上恒成立,所以函數在上單調遞減,因為,所以,由,,且在上單調遞減且連續得在上僅有一個零點,綜上可知:函數有2個零點.(3)記函數,下面考察的符號.求導得.當時恒成立.當時,因為,所以.∴在上恒成立,故在上單調遞減.∵,∴,又因為在上連續,所以由函數的零點存在性定理得存在唯一的,使,∴,因為,所以∴因為函數在上單調遞增,,所以在,上恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論