




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市江浦高級中學2025屆學業水平考試數學試題模擬卷(一)考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-2.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數,那么a+b的值是A. B.C. D.3.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()4.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.5.已知實數x,y滿足,則的最小值等于()A. B. C. D.6.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢7.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.8.設,點,,,,設對一切都有不等式成立,則正整數的最小值為()A. B. C. D.9.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4510.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.11.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.12.在復平面內,復數對應的點的坐標為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.14.已知二項式ax-1x6的展開式中的常數項為-16015.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.甲、乙、丙、丁四人參加冬季滑雪比賽,有兩人獲獎.在比賽結果揭曉之前,四人的猜測如下表,其中“√”表示猜測某人獲獎,“×”表示猜測某人未獲獎,而“○”則表示對某人是否獲獎未發表意見.已知四個人中有且只有兩個人的猜測是正確的,那么兩名獲獎者是_______.甲獲獎乙獲獎丙獲獎丁獲獎甲的猜測√××√乙的猜測×○○√丙的猜測×√×√丁的猜測○○√×三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知關于的不等式解集為().(1)求正數的值;(2)設,且,求證:.18.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.19.(12分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.20.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.21.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.22.(10分)已知函數.(1)當a=2時,求不等式的解集;(2)設函數.當時,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.2.B【解析】
依照偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.本題考查偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x);奇函數和偶函數的定義域必然關于原點對稱,定義域區間兩個端點互為相反數.3.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.4.B【解析】
根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.本題主要考查學生的合情推理與演繹推理,屬于基礎題.5.D【解析】
設,,去絕對值,根據余弦函數的性質即可求出.【詳解】因為實數,滿足,設,,,恒成立,,故則的最小值等于.故選:.本題考查了橢圓的參數方程、三角函數的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.6.D【解析】
根據折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.本題考查了折線圖,意在考查學生的理解能力.7.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.8.A【解析】
先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數的最小值為3.本題考查了數列的通項及求和問題,考查了數列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.9.B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.10.B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題11.D【解析】
建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據軌跡方程構造不等關系求得最值.12.C【解析】
利用復數的運算法則、幾何意義即可得出.【詳解】解:復數i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數形結合能力和計算能力,難度較難.14.2【解析】
在二項展開式的通項公式中,令x的冪指數等于0,求出r的值,即可求得常數項,再根據常數項等于-160求得實數a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數項為-C63故答案為:2.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.15.【解析】
設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.16.乙、丁【解析】
本題首先可根據題意中的“四個人中有且只有兩個人的猜測是正確的”將題目分為四種情況,然后對四種情況依次進行分析,觀察四人所猜測的結果是否沖突,最后即可得出結果.【詳解】從表中可知,若甲猜測正確,則乙,丙,丁猜測錯誤,與題意不符,故甲猜測錯誤;若乙猜測正確,則依題意丙猜測無法確定正誤,丁猜測錯誤;若丙猜測正確,則丁猜測錯誤;綜上只有乙,丙猜測不矛盾,依題意乙,丙猜測是正確的,從而得出乙,丁獲獎.所以本題答案為乙、丁.本題是一個簡單的合情推理題,能否根據“四個人中有且只有兩個人的猜測是正確的”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關鍵,考查推理能力,是簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)證明見解析.【解析】
(1)將不等式化為,求解得出,根據解集確定正數的值;(2)利用基本不等式以及不等式的性質,得出,,,三式相加,即可得證.【詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當且僅當時取等號綜上.本題主要考查了求絕對值不等式中參數的范圍以及基本不等式的應用,屬于中檔題.18.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數的單調遞增區間為;(2),,,,,,.本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵,屬中等題.19.(1)證明見解析(2)【解析】
(1)根據題意,連接交于,連接,利用三角形全等得,進而可得結論;(2)建立空間直角坐標系,利用向量求得平面的法向量,進而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點,連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標系,設,則,,,,,,為面的一個法向量,設面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認真審題,注意中位線和向量法的合理運用,屬于基礎題.20.(1)(2)【解析】
(1)先消去參數,化為直角坐標方程,再利用求解.(2)直線與曲線方程聯立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以本題主要考查參數方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.21.(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025教師節活動總結怎么寫(19篇)
- 圖書館工作總結模板(16篇)
- 地質勘探技術知識競賽題
- 員工勞動合同延期協議書
- 牌館轉讓合同協議書范本
- 合同協議書小學生
- 寄售車合同協議書模板
- 2025年自動駕駛卡車在物流行業中的自動駕駛技術產業鏈整合與商業化路徑報告
- 管材產品合作合同協議書
- 施工合同協議書電腦排版
- 雙氧水重大危險源危險化學品安全告知牌
- 口腔實習生培訓
- DL-T 5148-2021水工建筑物水泥灌漿施工技術條件-PDF解密
- JJG 377-2019放射性活度計
- 《鋼筋桁架樓承板應用技術規程》
- 家庭教育指導流程
- 整理收納師課件
- DB11-T 2205-2023 建筑垃圾再生回填材料應用技術規程
- 護工的溝通技巧
- 型材切割機安全技術操作規程范本
- 危重孕產婦和新生兒救治中心
評論
0/150
提交評論