2025屆麗江市重點中學教育教學質量監控高三年級數學試題_第1頁
2025屆麗江市重點中學教育教學質量監控高三年級數學試題_第2頁
2025屆麗江市重點中學教育教學質量監控高三年級數學試題_第3頁
2025屆麗江市重點中學教育教學質量監控高三年級數學試題_第4頁
2025屆麗江市重點中學教育教學質量監控高三年級數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆麗江市重點中學教育教學質量監控高三年級數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,為的外心,若,,,則()A. B. C. D.2.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.3.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.4.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.5.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.6.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.7.已知是虛數單位,則()A. B. C. D.8.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們為了紀念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.69.設是虛數單位,則()A. B. C. D.10.已知集合,,則為()A. B. C. D.11.如果直線與圓相交,則點與圓C的位置關系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內 D.上述三種情況都有可能12.已知是虛數單位,則復數()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________.14.“石頭、剪子、布”是大家熟悉的二人游戲,其規則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸的概率是______.15.在棱長為6的正方體中,是的中點,點是面,所在平面內的動點,且滿足,則三棱錐的體積的最大值是__________.16.展開式中的系數的和大于8而小于32,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.18.(12分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.19.(12分)隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統的概率;(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.20.(12分)在中,內角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)已知矩形中,,E,F分別為,的中點.沿將矩形折起,使,如圖所示.設P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

首先根據題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.2、D【解析】

先求出橢圓方程,再利用橢圓的定義得到,利用二次函數的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.3、C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.4、B【解析】

設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.5、A【解析】

令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.6、C【解析】

聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.7、B【解析】

根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.8、C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執行循環體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執行循環體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執行循環體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執行循環體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環,結束,故若執行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.9、A【解析】

利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.【點睛】本題考查復數的乘法運算,考查計算能力,屬于基礎題.10、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.11、B【解析】

根據圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題.12、A【解析】

根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構成的三角形及其內部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規劃求目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.14、【解析】

用樹狀圖法列舉出所有情況,得出甲不輸的結果數,再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.15、【解析】

根據與相似,,過作于,利用體積公式求解OP最值,根據勾股定理得出,,利用函數單調性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據函數單調性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數單調性的綜合應用,難度一般.16、4【解析】

由題意可得項的系數與二項式系數是相等的,利用題意,得出不等式組,求得結果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關二項式定理的問題,涉及到的知識點有展開式中項的系數和,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)取中點,連結、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點,連結、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,設,則,,,,∴,,,設面的法向量,則,取,得,同理,得平面的法向量,設二面角的平面角為,則,∴二面角的余弦值為.【點睛】本題考查面面垂直及線面垂直性質定理、線面垂直判定與性質定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.18、(Ⅰ);(Ⅱ)4953【解析】

(Ⅰ)遞推公式變形為,由數列是正項數列,得到,根據數列是等比數列求通項公式;(Ⅱ),根據新定義和對數的運算分類討論數列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數列的各項都為正數,∴,即.∴數列是以2為首項,2為公比的等比數列,∴.(Ⅱ)∵,∴,.∴數列的前2020項的和為.【點睛】本題考查根據數列的遞推公式求通項公式和數列的前項和,意在考查轉化與化歸的思想,計算能力,屬于中檔題型.19、(1);(2)不會超過預算,理由見解析【解析】

(1)求出某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為,可得某個時間段需要檢查污染源處理系統的概率;(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數的單調性,可得期望的最大值,從而得出結論.【詳解】(1)某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為某個時間段需要檢查污染源處理系統的概率為.(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調遞增;當時,,在上單調遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發生的概率、期望,及運用求導函數研究期望的最值,由根據期望值確定方案,此類題目解決的關鍵在于將生活中的量轉化為數學中和量,屬于中檔題.20、(1);(2)【解析】

(1)由已知條件和正弦定理進行邊角互化得,再根據余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎題.21、(1)見解析;(2)【解析】

(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論