




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
雙鴨山市重點中學2025屆教育教學質(zhì)量監(jiān)控高三年級數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時該命題成立,則時該命題也成立”.現(xiàn)已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立2.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.3.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17644.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元6.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.7.元代數(shù)學家朱世杰的數(shù)學名著《算術(shù)啟蒙》是中國古代代數(shù)學的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.68.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.59.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.11.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.12.二項式展開式中,項的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則實數(shù)的值是__________.14.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_____袋.15.在三棱錐P-ABC中,,,,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.16.的展開式中的系數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.18.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.19.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.20.(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.21.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82822.(10分)已知函數(shù),曲線在點處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點,且.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
寫出命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題為“假設(shè)當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.本題考查逆否命題與原命題等價性的應(yīng)用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.2.D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運算等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.3.A【解析】
根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎(chǔ)題.4.B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標為:,位于第二象限.故選:B.本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.5.D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.本小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.6.B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.7.B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關(guān)系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).8.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.9.C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.10.A【解析】
觀察可知,這個幾何體由兩部分構(gòu)成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。本題通過三視圖考察空間識圖的能力,屬于基礎(chǔ)題。11.D【解析】
設(shè)出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來求解最值.12.D【解析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D本題主要考查了二項式定理的運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.14.1【解析】
根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.15.【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.本題考查三棱錐內(nèi)切球的表面積問題,考查學生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.16.80.【解析】
只需找到展開式中的項的系數(shù)即可.【詳解】展開式的通項為,令,則,故的展開式中的系數(shù)為80.故答案為:80.本題考查二項式定理的應(yīng)用,涉及到展開式中的特殊項系數(shù),考查學生的計算能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.本題考查三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.18.(1)(2)【解析】
(1)設(shè)坐標后根據(jù)向量的坐標運算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標表示出,得到,所以,代入韋達定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡得的軌跡的方程為.(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.此題考查軌跡問題,橢圓和直線相交,注意坐標表示向量進行轉(zhuǎn)化的處理技巧,屬于較難題目.19.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設(shè),則,所以當時,,所以.綜上,的取值范圍是.20.(1)(2)當時,;當時,.【解析】
(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設(shè)等比數(shù)列的公比為,則,解得,當時,,當時,.本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項公式、前項和公式等基礎(chǔ)知識,考查運算求解能力..21.(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機支付族”的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CNESA 1001-2019電力儲能用直流動力連接器通用技術(shù)要求
- T/CMRA 05-2019豎肋鋁合金組合模板施工技術(shù)標準
- T/CMA HG028-2021輪胎冰地抓著性能測試道路制作及驗收和使用維護
- T/CITS 0006-2022標準“領(lǐng)跑者”評價要求音視頻設(shè)備檢驗檢測服務(wù)
- T/CIMA 0042-2023水體浮游動物在線監(jiān)測儀
- T/CIIA 030-2022微生物數(shù)據(jù)庫安全體系設(shè)計要求
- T/CIE 121-2021逆導(dǎo)型IGBT的熱阻測試方法
- T/CECS 10114-2021增強高密度聚乙烯(HDPE-IW)六棱結(jié)構(gòu)壁管材
- T/CECS 10066-2019綠色建材評價地源熱泵系統(tǒng)
- T/CAZG 006-2019貘類飼養(yǎng)管理技術(shù)規(guī)范
- 2025年新北師大版數(shù)學七年級下冊課件 第五章 5.1 軸對稱及其性質(zhì)
- 地球的自轉(zhuǎn)+訓練題 高二地理湘教版(2019)選擇性必修1
- 2025年基本公共衛(wèi)生服務(wù)人員培訓計劃
- 《香格里拉松茸保護與利用白皮書》
- 2025屆上海市中考聯(lián)考生物試卷含解析
- 信息化平臺項目集成聯(lián)調(diào)測試方案
- 2020-2024年高考語文真題語病題匯編及解析
- 醫(yī)院危險品安全管理培訓
- 早產(chǎn)兒體位管理的個案護理
- 《工業(yè)廢水深度處理零排放技術(shù)規(guī)范》編制說明
- 國開電大《財務(wù)報表分析》形考任務(wù)1-4
評論
0/150
提交評論