2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷_第1頁
2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷_第2頁
2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷_第3頁
2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷_第4頁
2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆銅川市重點中學高三下學期仿真考試(二)數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數是奇函數的導函數,當時,,則使得成立的的取值范圍是()A. B.C. D.2.已知集合,則的值域為()A. B. C. D.3.已知是函數的極大值點,則的取值范圍是A. B.C. D.4.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.5.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.166.的展開式中,項的系數為()A.-23 B.17 C.20 D.637.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.8.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.9.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象10.中,,為的中點,,,則()A. B. C. D.211.雙曲線的漸近線方程是()A. B. C. D.12.甲在微信群中發了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為互不相等的正實數,隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.已知函數的定義域為R,導函數為,若,且,則滿足的x的取值范圍為______.15.已知,,且,若恒成立,則實數的取值范圍是____.16.一個袋中裝著標有數字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數字最大的為4的概率是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.18.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.20.(12分)已知a,b∈R,設函數f(x)=(I)若b=0,求f(x)的單調區間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:21.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.22.(10分)為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區,在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區,共有50家企事業單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區采用的抽樣方法;(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;(3)以該小區的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構造函數,令,則,由可得,則是區間上的單調遞減函數,且,當x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數,當x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數的單調性是函數的重要性質之一,它的應用貫穿于整個高中數學的教學之中.某些數學問題從表面上看似乎與函數的單調性無關,但如果我們能挖掘其內在聯系,抓住其本質,那么運用函數的單調性解題,能起到化難為易、化繁為簡的作用.因此對函數的單調性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據題目的特點,構造一個適當的函數,利用它的單調性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.2、A【解析】

先求出集合,化簡=,令,得由二次函數的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數最值的求法,換元法要注意新變量的范圍,屬于中檔題3、B【解析】

方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數的極大值點矛盾.綜上,.故選B.方法二:依據極值的定義,要使是函數的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得,故選B.4、C【解析】

根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.5、D【解析】

根據復數乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.6、B【解析】

根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.7、A【解析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.8、B【解析】

利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.9、D【解析】

利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.10、D【解析】

在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.11、C【解析】

根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.12、B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、>【解析】

根據方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數,故,也即,也即.故答案為:【點睛】本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.14、【解析】

構造函數,再根據條件確定為奇函數且在上單調遞減,最后利用單調性以及奇偶性化簡不等式,解得結果.【詳解】依題意,,令,則,故函數為奇函數,故函數在上單調遞減,則,即,故,則x的取值范圍為.故答案為:【點睛】本題考查函數奇偶性、單調性以及利用函數性質解不等式,考查綜合分析求解能力,屬中檔題.15、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值16、【解析】

由題,得滿足題目要求的情況有,①有一個數字4,另外兩個數字從1,2,3里面選和②有兩個數字4,另外一個數字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數字4,另外兩個數字從1,2,3里面選,一共有種情況;②有兩個數字4,另外一個數字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.【點睛】本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.18、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.19、;①;②.【解析】

根據題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結合運用向量,韋達定理和點到直線的距離的知識,屬于難題.20、(I)詳見解析;(II)2【解析】

(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當a≤0時,f'(x)=e當a>0時,f'(x)=ex-a=0,x=lna當x∈lna,+∞時,綜上所述:a≤0時,fx在R上單調遞增;a>0時,fx在-∞,ln(II)f(x)=ex-ax-bf12=現在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當x∈0,+∞上時,x2+1f'x在x∈0,+∞上單調遞增,故fx在0,12上單調遞減,在1綜上所述:a+5b的最大值為【點睛】本題考查了函數單調性,函數的最值問題,意在考查學生的計算能力和綜合應用能力.21、(1);(2)1.【解析】

(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論