大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)大連理工大學(xué)《數(shù)據(jù)分析導(dǎo)論》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見(jiàn)的操作。假設(shè)你有一個(gè)包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項(xiàng)是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計(jì)分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒(méi)有實(shí)際作用,可以忽略2、數(shù)據(jù)分析中的特征工程旨在從原始數(shù)據(jù)中提取有意義的特征。假設(shè)我們?cè)诜治鑫谋緮?shù)據(jù),以下哪種特征提取方法可能有助于將文本轉(zhuǎn)化為可用于模型訓(xùn)練的數(shù)值特征?()A.詞袋模型B.TF-IDFC.詞嵌入D.以上都是3、在對(duì)一家公司的人力資源數(shù)據(jù)進(jìn)行分析,例如員工的績(jī)效評(píng)估、工作年限、培訓(xùn)經(jīng)歷等,以找出影響員工績(jī)效的因素,并為人力資源決策提供支持。以下哪種分析方法可能有助于發(fā)現(xiàn)潛在的模式和關(guān)系?()A.主成分分析B.關(guān)聯(lián)規(guī)則挖掘C.文本挖掘D.以上都是4、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,若要存儲(chǔ)學(xué)生的課程成績(jī),以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型5、數(shù)據(jù)分析中常用的統(tǒng)計(jì)方法有很多,其中描述性統(tǒng)計(jì)是一種基礎(chǔ)的方法。以下關(guān)于描述性統(tǒng)計(jì)的描述中,錯(cuò)誤的是?()A.描述性統(tǒng)計(jì)可以用來(lái)概括數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形狀B.描述性統(tǒng)計(jì)可以通過(guò)計(jì)算均值、中位數(shù)、標(biāo)準(zhǔn)差等指標(biāo)來(lái)實(shí)現(xiàn)C.描述性統(tǒng)計(jì)只能對(duì)數(shù)值型數(shù)據(jù)進(jìn)行分析,對(duì)于分類型數(shù)據(jù)無(wú)法處理D.描述性統(tǒng)計(jì)是數(shù)據(jù)分析的第一步,為進(jìn)一步的分析提供基礎(chǔ)6、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶的評(píng)價(jià)文本中挖掘他們的滿意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無(wú)法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞7、數(shù)據(jù)分析中的文本分類任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類。假設(shè)要對(duì)新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等類別,文本內(nèi)容多樣且語(yǔ)言表達(dá)復(fù)雜。以下哪種方法在處理這種多類別文本分類問(wèn)題時(shí)更能提高分類準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類算法C.依賴人工制定的分類規(guī)則D.隨機(jī)分類8、在數(shù)據(jù)分析中,選擇合適的統(tǒng)計(jì)量來(lái)描述數(shù)據(jù)的集中趨勢(shì)和離散程度是很重要的。假設(shè)你有一組員工的工資數(shù)據(jù),以下關(guān)于統(tǒng)計(jì)量的選擇,哪一項(xiàng)是最合適的?()A.用中位數(shù)描述集中趨勢(shì),用方差描述離散程度B.用均值描述集中趨勢(shì),用標(biāo)準(zhǔn)差描述離散程度C.用眾數(shù)描述集中趨勢(shì),用極差描述離散程度D.隨機(jī)選擇統(tǒng)計(jì)量,不考慮數(shù)據(jù)的特點(diǎn)9、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從一個(gè)電商網(wǎng)站的用戶購(gòu)買記錄中挖掘潛在的消費(fèi)模式,以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)經(jīng)常一起購(gòu)買的商品組合B.分類算法可以預(yù)測(cè)新用戶可能感興趣的商品類別C.數(shù)據(jù)挖掘的結(jié)果總是準(zhǔn)確無(wú)誤的,可以直接用于決策,無(wú)需進(jìn)一步驗(yàn)證D.聚類分析可以將用戶分為具有相似購(gòu)買行為的不同群體10、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個(gè)指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)11、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來(lái)說(shuō)難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無(wú)誤的,可以直接用于決策12、在進(jìn)行數(shù)據(jù)分析時(shí),異常值的檢測(cè)和處理是重要的環(huán)節(jié)。假設(shè)我們?cè)诜治鲆唤M生產(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù)。以下關(guān)于異常值的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.異常值可能是由于數(shù)據(jù)錄入錯(cuò)誤或特殊情況導(dǎo)致的B.可以通過(guò)箱線圖等方法直觀地檢測(cè)異常值C.對(duì)于異常值,應(yīng)該立即刪除,以免影響分析結(jié)果D.對(duì)異常值的處理需要根據(jù)具體情況進(jìn)行判斷,有時(shí)需要進(jìn)一步調(diào)查原因13、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對(duì)總體具有較好的代表性,同時(shí)又能降低抽樣誤差?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣14、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹(shù)形圖15、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖16、對(duì)于一個(gè)包含多個(gè)變量的數(shù)據(jù)集,若要找出變量之間的潛在結(jié)構(gòu)關(guān)系,以下哪種方法較為有效?()A.主成分分析B.判別分析C.對(duì)應(yīng)分析D.典型相關(guān)分析17、數(shù)據(jù)分析中的決策樹(shù)算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹(shù)來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某產(chǎn)品,以下哪個(gè)因素可能影響決策樹(shù)的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是18、在進(jìn)行回歸分析時(shí),如果自變量之間存在高度的多重共線性,會(huì)對(duì)模型產(chǎn)生什么影響?()A.提高模型的準(zhǔn)確性B.使模型更易于解釋C.導(dǎo)致系數(shù)估計(jì)不準(zhǔn)確D.增加模型的穩(wěn)定性19、在數(shù)據(jù)分析中,如果想要比較兩個(gè)獨(dú)立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.秩和檢驗(yàn)20、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂(lè)等領(lǐng)域。假設(shè)要為一個(gè)在線音樂(lè)平臺(tái)構(gòu)建推薦系統(tǒng),根據(jù)用戶的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂(lè)推薦場(chǎng)景時(shí)更能滿足用戶的個(gè)性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過(guò)濾推薦C.基于知識(shí)的推薦D.混合推薦二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析項(xiàng)目中如何進(jìn)行項(xiàng)目管理,包括項(xiàng)目計(jì)劃制定、進(jìn)度跟蹤、風(fēng)險(xiǎn)管理等方面,并闡述項(xiàng)目管理對(duì)項(xiàng)目成功的重要性。2、(本題5分)在處理氣象數(shù)據(jù)時(shí),常用的數(shù)據(jù)分析方法和技術(shù)有哪些?解釋天氣預(yù)報(bào)模型、氣候數(shù)據(jù)分析等概念,并舉例說(shuō)明應(yīng)用。3、(本題5分)描述數(shù)據(jù)質(zhì)量評(píng)估的指標(biāo)體系,包括準(zhǔn)確性、完整性、一致性等,并說(shuō)明如何通過(guò)這些指標(biāo)來(lái)評(píng)估數(shù)據(jù)質(zhì)量和采取改進(jìn)措施。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某電信運(yùn)營(yíng)商擁有用戶通話時(shí)長(zhǎng)、流量使用、套餐選擇等數(shù)據(jù)。分析用戶的消費(fèi)行為,設(shè)計(jì)更符合用戶需求的套餐和增值服務(wù)。2、(本題5分)一家連鎖書(shū)店記錄了各門店的銷售數(shù)據(jù),包含圖書(shū)類別、作者、銷量、價(jià)格、促銷方式等。研究不同作者的圖書(shū)在不同促銷方式下的銷售表現(xiàn)。3、(本題5分)某電商平臺(tái)的家居用品類目擁有銷售數(shù)據(jù)、用戶搜索關(guān)鍵詞、商品評(píng)價(jià)等。分析家居用品市場(chǎng)的需求趨勢(shì)和用戶關(guān)注點(diǎn),改進(jìn)產(chǎn)品推薦和選品策略。4、(本題5分)某在線購(gòu)物平臺(tái)保存了用戶的購(gòu)物車放棄數(shù)據(jù)、支付失敗記錄、售后反饋等。思考如何通過(guò)這些數(shù)據(jù)改善用戶購(gòu)物體驗(yàn)和解決支付問(wèn)題。5、(本題5分)一家家具制造商收集了產(chǎn)品數(shù)據(jù),包括款式、材質(zhì)、顏色、生產(chǎn)成本、銷售價(jià)格等。研究不同款式和材質(zhì)的家具在生產(chǎn)成本和銷售價(jià)格上的關(guān)系。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)社交媒體平臺(tái)產(chǎn)生了大量的用戶數(shù)據(jù),具有巨大的商業(yè)價(jià)值。請(qǐng)?jiān)敿?xì)闡述如何通過(guò)數(shù)據(jù)分析挖

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論