




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省漳州市龍海程溪中學高三元月聯考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,若,則()A. B. C. D.2.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為3.已知實數滿足則的最大值為()A.2 B. C.1 D.04.下列命題中,真命題的個數為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.35.已知橢圓內有一條以點為中點的弦,則直線的方程為()A. B.C. D.6.已知復數滿足,則=()A. B.C. D.7.中國古代用算籌來進行記數,算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數時,像阿拉伯記數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,其中個位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.8.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.19.已知函數,將函數的圖象向左平移個單位長度,得到函數的圖象,若函數的圖象的一條對稱軸是,則的最小值為A. B. C. D.10.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.6211.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.12.若,滿足約束條件,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.秦九韶算法是南宋時期數學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.14.函數滿足,當時,,若函數在上有1515個零點,則實數的范圍為___________.15.已知實數a,b,c滿足,則的最小值是______.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記函數的最小值為.(1)求的值;(2)若正數,,滿足,證明:.18.(12分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數據,統計結果如下表所示.組別頻數(1)已知此次問卷調查的得分服從正態分布,近似為這人得分的平均值(同一組中的數據用該組區間的中點值為代表),請利用正態分布的知識求;(2)在(1)的條件下,環保部門為此次參加問卷調查的市民制定如下獎勵方案.(ⅰ)得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.附:,若,則,,.19.(12分)對于非負整數集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數.(1)給出所有的元素均小于的好集合.(給出結論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數倍.20.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.21.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.22.(10分)已知函數.(1)當時,求函數的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.本小題主要考查集合的交集概念及運算,屬于基礎題.2.C【解析】
根據三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.3.B【解析】
作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B考查線性規劃,是基礎題.4.C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數函數單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.5.C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.本題考查了橢圓內點差法求直線方程,意在考查學生的計算能力和應用能力.6.B【解析】
利用復數的代數運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.本題考查復數代數形式的乘除運算,考查復數的基本概念,屬于基礎題.7.B【解析】
根據題意表示出各位上的數字所對應的算籌即可得答案.【詳解】解:根據題意可得,各個數碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應算籌表示為中的.故選:.本題主要考查學生的合情推理與演繹推理,屬于基礎題.8.C【解析】
連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.9.C【解析】
將函數的圖象向左平移個單位長度,得到函數的圖象,因為函數的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.10.B【解析】
根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.11.C【解析】
取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.本題考查通過幾何法求異面直線的夾角,考查計算能力.12.B【解析】
根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B本題考查根據線性規劃求范圍,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1055【解析】
模擬執行程序框圖中的程序,即可求得結果.【詳解】模擬執行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.本題考查程序框圖的模擬執行,屬基礎題.14.【解析】
由已知,在上有3個根,分,,,四種情況討論的單調性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設,,易知在上單調遞減,在,上單調遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調遞增,最多只有1個零點,不滿足題意;綜上,實數的范圍為.故答案為:本題考查利用導數研究函數的零點個數問題,涉及到函數的周期性、分類討論函數的零點,是一道中檔題.15.【解析】
先分離出,應用基本不等式轉化為關于c的二次函數,進而求出最小值.【詳解】解:若取最小值,則異號,,根據題意得:,又由,即有,則,即的最小值為,故答案為:本題考查了基本不等式以及二次函數配方求最值,屬于中檔題.16.【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數取得最小時對應的最優解,代入目標函數計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,即點,平移直線,當直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.本題考查簡單的線性規劃問題,考查線性目標函數的最值問題,考查數形結合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)將函數轉化為分段函數或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.本題主要考查了絕對值函數的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應用,考查了學生的邏輯推理和運算求解能力.18.(1);(2)見解析.【解析】
(1)根據題中所給的統計表,利用公式計算出平均數的值,再利用數據之間的關系將、表示為,,利用題中所給數據,以及正態分布的概率密度曲線的對稱性,求出對應的概率;(2)根據題意,高于平均數和低于平均數的概率各為,再結合得元、元的概率,分析得出話費的可能數據都有哪些,再利用公式求得對應的概率,進而得出分布列,之后利用離散型隨機變量的分布列求出其數學期望.【詳解】(1)由題意可得,易知,,,;(2)根據題意,可得出隨機變量的可能取值有、、、元,,,,.所以,隨機變量的分布列如下表所示:所以,隨機變量的數學期望為.本題考查概率的計算,涉及到平均數的求法、正態分布概率的計算以及離散型隨機變量分布列及其數學期望,在解題時要弄清楚隨機變量所滿足的分布列類型,結合相應公式計算對應事件的概率,考查計算能力,屬于中等題.19.(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據好集合的定義列舉即可得到結果;(2)設,其中,由知;由可知或,分別討論兩種情況可的結果;(3)記,則,設,由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設,其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數.(3)記,則,首先,,設,其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數倍.本題考查集合中的新定義問題的求解,關鍵是明確已知中所給的新定義的具體要求,根據集合元素的要求進行推理說明,對于學生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.20.(1),證明見解析;(2)【解析】
(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單調性和基本不等式的應用求出參數的范圍.【詳解】(1)數列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數),所以數列是首項為1,公差為的等差數列.所以,整理得.(2)數列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.本題考查的知識要點:數列的通項公式的求法及應用,疊乘法的應用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遵化薪酬福利管理辦法
- 拆房項目現場管理辦法
- 西藏房屋租賃管理辦法
- 廣告文印采購管理辦法
- 產品培訓課件封面圖案
- 朗誦的培訓的課件
- 腸梗阻內科護理課件
- 肝癌患者護理課件
- 恩施清外初中數學試卷
- 電腦改數學試卷
- 《污水處理企業安全生產標準化建設規范》(T-GDPAWS 11-2022)
- 繪畫基礎(師范教育專業繪畫的基礎知識和創作方法)全套教學課件
- 2024年黑龍江高中學業水平合格性考試數學試卷試題(含答案詳解)
- 湖南省長沙市2024年七年級下學期數學期末考試試卷附答案
- 2023年中國美術學院輔導員真題
- 截肢術患者圍手術期護理
- 2024年江西石城縣城投集團與贛江源農業發展有限公司招聘筆試參考題庫含答案解析
- 《經濟學基礎》課后題答案
- vcm音圈馬達制造工藝
- 沖壓作業安全管理措施
- 牛津上海版初中英語單詞表(六年級至九年級)-
評論
0/150
提交評論