




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省正陽縣第二高級中學2023年高三迎三模模擬卷(4月)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1802.設不等式組表示的平面區域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.3.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.4.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.95.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題6.已知函數在上單調遞增,則的取值范圍()A. B. C. D.7.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.8.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.9.的展開式中各項系數的和為2,則該展開式中常數項為A.-40 B.-20 C.20 D.4010.已知,則()A.5 B. C.13 D.11.函數的大致圖象為A. B.C. D.12.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.14.如果復數滿足,那么______(為虛數單位).15.函數的值域為_____.16.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.18.(12分)在直角坐標系中,圓的參數方程為:(為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.(1)求圓的極坐標方程;(2)若直線:(為參數)被圓截得的弦長為,求直線的傾斜角.19.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.20.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發、行進步后落在軸上的不同走法的種數為.(1)分別求、、的值;(2)求的表達式.21.(12分)等差數列中,.(1)求的通項公式;(2)設,記為數列前項的和,若,求.22.(10分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.2.B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.3.D【解析】
根據面面關系判斷A;根據否定的定義判斷B;根據充分條件,必要條件的定義判斷C;根據逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.4.B【解析】
模擬程序運行,觀察變量值可得結論.【詳解】循環前,循環時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環,輸出.故選:B.【點睛】本題考查程序框圖,考查循環結構,解題時可模擬程序運行,觀察變量值,從而得出結論.5.D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.6.B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.7.D【解析】
根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.8.A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。9.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應的常數項=80,由5-2r=-1得r=3,對應的常數項=-40,故所求的常數項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數項==-40+80=4010.C【解析】
先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.11.A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.12.C【解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.14.【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡,然后利用復數模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數除法運算,考查復數的模的求法,屬于基礎題.15.【解析】
利用配方法化簡式子,可得,然后根據觀察法,可得結果.【詳解】函數的定義域為所以函數的值域為故答案為:【點睛】本題考查的是用配方法求函數的值域問題,屬基礎題。16.164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】
(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數的函數的單調性的討論,不等式恒成立時,求解參數的范圍,屬于難度題.18.(1);(2)或【解析】
(1)消去參數可得圓的直角坐標方程,再根據,,即可得極坐標方程;(2)寫出直線的極坐標方程為,代入圓的極坐標方程,根據極坐標的意義列出等式解出即可.【詳解】(1)圓:,消去參數得:,即:,∵,,.∴,.(2)∵直線:的極坐標方程為,當時.即:,∴或.∴或,∴直線的傾斜角為或.【點睛】本題主要考查了參數方程化為普通方程,直角坐標方程化為極坐標方程以及極坐標的幾何意義,屬于中檔題.19.(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.20.(1),,,(2)【解析】
(1)根據機器人的進行規律可確定、、的值;(2)首先根據機器人行進規則知機器人沿軸行進步,必須沿軸負方向行進相同的步數,而余下的每一步行進方向都有兩個選擇(向上或向下),由此結合組合知識確定機器人的每一種走法關于的表達式,并得到的表達式,然后結合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設為沿軸正方向走的步數(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數)總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數,為其中含項的系數為故.【點睛】本題考查組合數、二項式定理,考查學生的邏輯推理能力,推理論證能力以及分類討論的思想.21.(1)(2)【解析】
(1)由基本量法求出公差后可得通項公式;(2)由等差數列前項和公式求得,可求得.【詳解】解:(1)設的公差為,由題設得因為,所以解得,故.(2)由(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 質量認證申請表-質量認證申請材料準備
- 銀行競聘考試試題及答案
- 音樂上崗考試試題及答案
- 醫院物流考試試題及答案
- 六一書畫活動方案
- 六一兒童節文藝活動方案
- 六一咖啡活動策劃方案
- 六一奔馳活動方案
- 六一幼兒集市活動方案
- 六一活動寶樂匯活動方案
- 小學一年級下學期數學無紙化測試題
- 2022-2023學年江蘇省無錫市江陰市數學四下期末監測試題含解析
- 小學生愛國主義教育校長講話稿7篇
- 口腔頜面外科學 第十章 顳下頜關節疾病
- 建設文化強國說課 教學設計
- 陳巴爾虎旗草原全域旅游發展總體規劃
- 壓鑄行業常用英語專業詞匯
- 立管高空作業施工專項安全方案
- GB/T 7778-2017制冷劑編號方法和安全性分類
- GB/T 40393-2021金屬和合金的腐蝕奧氏體不銹鋼晶間腐蝕敏感性加速腐蝕試驗方法
- GB/T 31765-2015高密度纖維板
評論
0/150
提交評論