廣東省陽東廣雅學校2023-2024學年高三下期第二次月考數學試題_第1頁
廣東省陽東廣雅學校2023-2024學年高三下期第二次月考數學試題_第2頁
廣東省陽東廣雅學校2023-2024學年高三下期第二次月考數學試題_第3頁
廣東省陽東廣雅學校2023-2024學年高三下期第二次月考數學試題_第4頁
廣東省陽東廣雅學校2023-2024學年高三下期第二次月考數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省陽東廣雅學校2022-2023學年高三下期第二次月考數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數列的前項和為,則的最小值為()A. B. C. D.2.已知函數f(x)=xex2+axeA.1 B.-1 C.a D.-a3.在中,,則=()A. B.C. D.4.已知函數,,當時,不等式恒成立,則實數a的取值范圍為()A. B. C. D.5.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.6.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.7.已知無窮等比數列的公比為2,且,則()A. B. C. D.8.已知,則()A. B. C. D.9.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格10.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()11.已知數列滿足:)若正整數使得成立,則()A.16 B.17 C.18 D.1912.已知函數,為的零點,為圖象的對稱軸,且在區間上單調,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線上一點,是圓關于直線對稱的曲線上任意一點,則的最小值為________.14.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.15.運行下面的算法偽代碼,輸出的結果為_____.16.已知集合,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、所對的邊分別為、、,角、、的度數成等差數列,.(1)若,求的值;(2)求的最大值.18.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.19.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.20.(12分)已知函數,.(1)證明:函數的極小值點為1;(2)若函數在有兩個零點,證明:.21.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.22.(10分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由,可求出等比數列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.【點睛】本題考查等比數列的通項公式的求法,考查等比數列的性質,考查學生的計算求解能力,屬于中檔題.2.A【解析】

令xex=t,構造g(x)=xex,要使函數f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調遞增,在1,+∞上單調遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數g(x)的圖象(見下圖),要使函數f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數零點問題,常常利用數形結合、等價轉化等數學思想.3.B【解析】

在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題.4.D【解析】

由變形可得,可知函數在為增函數,由恒成立,求解參數即可求得取值范圍.【詳解】,即函數在時是單調增函數.則恒成立..令,則時,單調遞減,時單調遞增.故選:D.【點睛】本題考查構造函數,借助單調性定義判斷新函數的單調性問題,考查恒成立時求解參數問題,考查學生的分析問題的能力和計算求解的能力,難度較難.5.C【解析】

先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.6.D【解析】

由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.7.A【解析】

依據無窮等比數列求和公式,先求出首項,再求出,利用無窮等比數列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數列的公比為2,則無窮等比數列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數列求和公式的應用。8.B【解析】

利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.9.D【解析】

先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.10.D【解析】

由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.11.B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數列的相關計算,意在考查學生的計算能力和對于數列公式方法的綜合應用.12.B【解析】

由題意可得,且,故有①,再根據,求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數,,為的零點,為圖象的對稱軸,,且,、,,即為奇數①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數的圖象的特征,正弦函數的周期性以及它的圖象的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關動點距離的最小值問題,涉及到的知識點有點關于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.14.【解析】

一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.15.【解析】

模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執行:.故答案為:【點睛】本題考查算法語句中的循環語句和裂項相消法求和;掌握循環體執行的次數是求解本題的關鍵;屬于基礎題.16.【解析】

直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)由角的度數成等差數列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當,即時,.【方法點睛】解三角形問題基本思想方法:從條件出發,利用正弦定理(或余弦定理)進行代換、轉化.逐步化為純粹的邊與邊或角與角的關系,即考慮如下兩條途徑:①統一成角進行判斷,常用正弦定理及三角恒等變換;②統一成邊進行判斷,常用余弦定理、面積公式等.18.(1)唯一的極大值點1,無極小值點.(2)1【解析】

(1)求出導函數,求得的解,確定此解兩側導數值的正負,確定極值點;(2)問題可變形為恒成立,由導數求出函數的最小值,時,無最小值,因此只有,從而得出的不等關系,得出所求最大值.【詳解】解:(1)定義域為,當時,,令得,當所以在上單調遞增,在上單調遞減,所以有唯一的極大值點,無極小值點.(2)當時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數在上單調遞減,在上單調遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導數求函數極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側的符號相反.不等式恒成立深深轉化為求函數的最值,這里分離參數法起關鍵作用.19.(1)(2)【解析】

(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.20.(1)見解析(2)見解析【解析】

(1)利用導函數的正負確定函數的增減.(2)函數在有兩個零點,即方程在區間有兩解,令通過二次求導確定函數單調性證明參數范圍.【詳解】解:(1)證明:因為,當時,,,所以在區間遞減;當時,,所以,所以在區間遞增;且,所以函數的極小值點為1(2)函數在有兩個零點,即方程在區間有兩解,令,則令,則,所以在單調遞增,又,故存在唯一的,使得,即,所以在單調遞減,在區間單調遞增,且,又因為,所以,方程關于的方程在有兩個零點,由的圖象可知,,即.【點睛】本題考查利用導數研究函數單調性,確定函數的極值,利用二次求導,零點存在性定理確定參數范圍,屬于難題.21.(1)見解析;(2).【解析】

(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設,則,建立空間直角坐標系.設平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論