哈爾濱遠東理工學院《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷_第1頁
哈爾濱遠東理工學院《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷_第2頁
哈爾濱遠東理工學院《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷_第3頁
哈爾濱遠東理工學院《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷_第4頁
哈爾濱遠東理工學院《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁哈爾濱遠東理工學院

《智能網(wǎng)聯(lián)汽車技術》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的知識圖譜是一種結構化的知識表示方法。假設要構建一個關于歷史事件的知識圖譜,以下哪個方面是需要重點考慮的?()A.事件的時間順序B.事件的參與者C.事件的影響力評估D.以上都是2、人工智能中的聯(lián)邦學習可以在保護數(shù)據(jù)隱私的前提下進行模型訓練。假設多個機構想要合作訓練一個模型,但又不想共享原始數(shù)據(jù),以下哪個技術是聯(lián)邦學習的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計算框架D.數(shù)據(jù)脫敏3、假設要開發(fā)一個能夠在虛擬環(huán)境中進行自主探索和學習的人工智能體,例如在游戲中不斷提升能力,以下哪種學習機制和策略可能是關鍵的?()A.無監(jiān)督學習B.有監(jiān)督學習C.強化學習D.以上都是4、人工智能中的異常檢測在許多領域都有重要應用,如網(wǎng)絡安全、金融欺詐檢測等。假設我們要在金融交易數(shù)據(jù)中檢測異常行為,以下關于異常檢測的方法,哪一項是不準確的?()A.基于統(tǒng)計模型的方法B.基于聚類的方法C.基于規(guī)則的方法D.異常檢測不需要考慮數(shù)據(jù)的分布特征5、人工智能中的深度學習模型通常需要大量的訓練數(shù)據(jù)。假設要訓練一個用于圖像分類的卷積神經(jīng)網(wǎng)絡(CNN),但可用的標注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強技術,如翻轉、旋轉、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標注的數(shù)據(jù)進行訓練D.放棄深度學習模型,選擇傳統(tǒng)的機器學習算法6、在人工智能的發(fā)展過程中,可解釋性是一個重要的問題。假設一個深度學習模型在醫(yī)療診斷中做出了關鍵決策,但無法解釋其決策的依據(jù)。這可能會帶來哪些潛在的風險?()A.醫(yī)生可能無法信任模型的結果B.模型的準確率可能會下降C.模型的訓練時間可能會增加D.模型的復雜度可能會降低7、人工智能在智能家居領域的應用不斷豐富。假設一個智能家居系統(tǒng)要利用人工智能實現(xiàn)自動化控制,以下關于其應用的描述,哪一項是不正確的?()A.根據(jù)家庭成員的習慣和環(huán)境條件,自動調(diào)整燈光、溫度和家電設備B.利用語音識別和自然語言處理技術,實現(xiàn)與用戶的自然交互C.人工智能可以完全理解用戶的所有需求和意圖,不會出現(xiàn)誤解D.結合傳感器數(shù)據(jù)和機器學習算法,實現(xiàn)能源的高效管理和節(jié)約8、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對模型的訓練和性能有著重要的影響。以下關于數(shù)據(jù)在人工智能中的作用的描述,不正確的是()A.高質(zhì)量、大規(guī)模的數(shù)據(jù)能夠幫助模型學習到更準確和通用的模式B.數(shù)據(jù)清洗和預處理是提高數(shù)據(jù)質(zhì)量的重要步驟,可以減少噪聲和錯誤C.即使數(shù)據(jù)量較少,通過巧妙的算法設計和模型架構,也能訓練出性能優(yōu)異的人工智能模型D.數(shù)據(jù)的標注工作對于監(jiān)督學習非常重要,準確的標注能夠提高模型的學習效果9、在人工智能的應用中,語音合成技術可以將文本轉換為自然流暢的語音。假設要為一款智能導航應用開發(fā)語音合成功能,以下哪個因素對于合成語音的質(zhì)量影響最大?()A.語音的音色選擇B.文本的語法結構C.語音的韻律和語調(diào)D.文本的詞匯量10、強化學習是一種通過與環(huán)境交互來學習最優(yōu)策略的方法。假設有一個機器人需要通過學習在復雜的環(huán)境中行走,并且根據(jù)行走的效果獲得獎勵或懲罰。以下關于強化學習的描述,哪一項是不準確的?()A.智能體通過不斷嘗試和錯誤來改進策略B.獎勵信號對于智能體的學習至關重要C.強化學習不需要對環(huán)境進行建模D.智能體的最終目標是最大化累積獎勵11、強化學習是人工智能中的一種學習方法,常用于訓練智能體在環(huán)境中做出最優(yōu)決策。假設一個機器人需要通過強化學習來學習如何在復雜的環(huán)境中行走而不摔倒。以下關于強化學習的描述,哪一項是不正確的?()A.智能體通過與環(huán)境進行交互,根據(jù)獲得的獎勵來調(diào)整自己的行為策略B.強化學習需要大量的試驗和錯誤來找到最優(yōu)策略,計算成本較高C.可以用于解決連續(xù)動作空間和高維度狀態(tài)空間的問題D.強化學習不需要對環(huán)境有任何先驗知識,完全依靠隨機探索來學習12、人工智能中的異常檢測是一項重要任務。假設要在一個工業(yè)生產(chǎn)過程中檢測出異常的數(shù)據(jù)點,以下關于異常檢測方法的描述,正確的是:()A.基于統(tǒng)計的異常檢測方法適用于所有類型的數(shù)據(jù),準確性高B.基于機器學習的異常檢測模型需要大量的正常數(shù)據(jù)進行訓練C.深度學習的異常檢測方法能夠自動發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無需人工特征工程D.以上方法在不同的應用場景中都有各自的優(yōu)缺點,需要根據(jù)實際情況選擇13、在人工智能的異常檢測任務中,例如檢測網(wǎng)絡中的異常流量或金融交易中的欺詐行為。假設正常數(shù)據(jù)的模式較為復雜,而異常數(shù)據(jù)相對較少且具有多樣性。以下哪種方法在這種情況下更適合進行異常檢測?()A.基于統(tǒng)計的方法,設定閾值判斷異常B.無監(jiān)督學習方法,自動發(fā)現(xiàn)異常模式C.監(jiān)督學習方法,使用有標注的異常數(shù)據(jù)進行訓練D.人工檢查所有數(shù)據(jù),識別異常14、人工智能在醫(yī)療影像診斷中的應用不斷發(fā)展。以下關于人工智能在醫(yī)療影像診斷應用的說法,不正確的是()A.能夠輔助醫(yī)生更快速、準確地檢測病變和異常B.可以提高診斷的一致性和重復性,減少人為誤差C.人工智能的診斷結果可以完全替代醫(yī)生的專業(yè)判斷D.需要與醫(yī)生的臨床經(jīng)驗和專業(yè)知識相結合,共同為患者提供診斷服務15、在人工智能的自動駕駛場景中,車輛需要與周圍的其他車輛和基礎設施進行有效的通信和協(xié)作。假設要實現(xiàn)車輛之間的安全、高效的信息交互,以下哪種通信技術和協(xié)議在可靠性和低延遲方面表現(xiàn)最為突出?()A.4G通信B.5G通信C.車聯(lián)網(wǎng)專用短程通信(DSRC)D.Wi-Fi通信二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能在智能人力資源離職預測中的技術。2、(本題5分)簡述深度強化學習的進展和應用。3、(本題5分)解釋人工智能在智能績效數(shù)據(jù)分析中的方法。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python中的TensorFlow框架,構建一個基于自監(jiān)督圖學習(Self-SupervisedGraphLearning)的模型,對圖結構數(shù)據(jù)進行特征學習和分析。2、(本題5分)運用自然語言處理技術,對法律合同進行條款分析和風險評估。輔助法律專業(yè)人員進行合同審查。3、(本題5分)使用Python的TensorFlow框架,構建一個基于生成對抗網(wǎng)絡(GAN)的音樂風格轉換模型。將一種音樂風格轉換為另一種風格。4、(本題5分)運用深度學習框架構建一個自然語言問答系統(tǒng),支持復雜問題的回答和推理,提高回答的準確性和深度。5、(本題5分)運用Python的TensorFlow框架,構建一個基于生成式對抗網(wǎng)絡(GAN)的音樂生成模型。能夠生成具有一定風格和旋律的音樂片段。四、案例分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論