




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第第頁高考數學總復習《古典概型》專項測試卷帶答案學校:___________班級:___________姓名:___________考號:___________一、單項選擇題1.為了強化安全意識,某校擬在周一至周五的5天中隨機選擇2天進行緊急疏散演練,則選擇的2天恰好是連續2天的概率是()A.eq\f(2,5) B.eq\f(3,5)C.eq\f(3,10) D.eq\f(1,5)2.從正六邊形的6個頂點中隨機選擇4個頂點,則以它們作為頂點的四邊形是矩形的概率等于()A.eq\f(1,10) B.eq\f(1,8)C.eq\f(1,6) D.eq\f(1,5)3.《易經》是中國傳統文化中的精髓.如圖是易經先天八卦圖,每一卦由三根線組成(“”表示一根陽線,“”表示一根陰線),現從八卦中任取兩卦,這兩卦的陽線數目相同的概率為()A.eq\f(1,14)B.eq\f(1,7)C.eq\f(3,14)D.eq\f(3,28)4.在二行四列的方格棋盤上沿骰子的某條棱翻動骰子(相對面上分別標有1點和6點,2點和5點,3點和4點).開始時,骰子如圖1那樣擺放,朝上的點數是2,最后翻動到如圖2所示位置.現要求翻動次數最少,則最后骰子朝上的點數為1的概率為()圖1圖2A.eq\f(1,6)B.eq\f(1,4)C.eq\f(1,3)D.eq\f(1,2)5.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數的和”,如30=7+23.在不超過30的素數中,隨機選取兩個不同的數,其和等于30的概率是()A.eq\f(1,12)B.eq\f(1,14)C.eq\f(1,15)D.eq\f(1,18)6.整數集就像一片浩瀚無邊的海洋,充滿了無盡的奧秘.古希臘數學家畢達哥拉斯發現220和284具有如下性質:220的所有真因數(不包括本身的因數)之和恰好等于284,同時284的所有真因數之和也等于220,他把具有這種性質的兩個整數叫作一對“親和數”,“親和數”的發現掀起了無數數學愛好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對“親和數”,把這六個數隨機分成兩組,一組2個數,另一組4個數,則220和284在同一組的概率為()A.eq\f(1,15)B.eq\f(2,5)C.eq\f(7,15)D.eq\f(1,5)7.(2024·河南新鄉高三模擬)連續擲三次骰子,先后得到的點數分別為x,y,z,那么點P(x,y,z)到原點O的距離不超過3的概率為()A.eq\f(4,27)B.eq\f(7,216)C.eq\f(11,72)D.eq\f(1,6)8.2020年11月5日—11月10日,在上海國家會展中心舉辦了第三屆中國國際進口博覽會,其中的“科技生活展區”設置了各類與人們生活息息相關的科技專區.現從“高檔家用電器”“智能家居”“消費電子”“服務機器人”“人工智能及軟件技術”五個專區中選擇兩個專區參觀,則選擇的兩個專區中包括“人工智能及軟件技術”專區的概率是()A.eq\f(1,10)B.eq\f(3,10)C.eq\f(2,5)D.eq\f(3,5)9.(2024·福建南安僑光中學第一次階段考)如圖所示的圖形中,每個三角形上各有一個數字,若六個三角形上的數字之和為21,則稱該圖形是“和諧圖形”.已知其中四個三角形上的數字之和為14,現從1,2,3,4,5這五個數中任取兩個數標在另外兩個三角形上,則恰好使該圖形為“和諧圖形”的概率為()A.eq\f(1,10) B.eq\f(1,5)C.eq\f(3,10) D.eq\f(3,20)二、多項選擇題10.(2024·山東師大附中模擬)濟南市組織2023年度高中校園足球比賽,共有10支球隊報名參賽.比賽開始前將這10支球隊分成兩個小組,每小組5支球隊,其中獲得2022年度冠、亞軍的兩支球隊分別在第一小組和第二小組,剩余8支球隊抽簽分組.已知這8支球隊中包含甲、乙兩隊,記“甲隊分在第一小組”為事件M1,“乙隊分在第一小組”為事件M2,“甲、乙兩隊分在同一小組”為事件M3,則()A.P(M1)=eq\f(1,2)B.P(M3)=eq\f(3,7)C.P(M1)+P(M2)=P(M3)D.事件M1與事件M3相互獨立11.(2024·山東泰安模擬)算盤是我國古代一項偉大的發明,是一類重要的計算工具.下圖是一把算盤的初始狀態,自右向左,分別表示個位、十位、百位、千位……上面一粒珠子(簡稱上珠)代表5,下面一粒珠子(簡稱下珠)代表1,五粒下珠的大小等于同組一粒上珠的大小.例如,個位撥動一粒上珠、十位撥動一粒下珠至梁上,表示數字15.現將算盤的個位、十位、百位、千位分別隨機撥動一粒珠子至梁上,設事件A=“表示的四位數能被3整除”,B=“表示的四位數能被5整除”,則()A.P(A)=eq\f(3,8) B.P(B)=eq\f(1,3)C.P(A∪B)=eq\f(11,16) D.P(AB)=eq\f(3,16)三、填空題與解答題12.如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機選取3個點,則這3個點與原點O共面的概率為________.13.(2024·北京海淀區模擬)現有7名數理化成績優秀者,分別用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的數學成績優秀,B1,B2的物理成績優秀,C1,C2的化學成績優秀.從中選出數學、物理、化學成績優秀者各1名,組成一個小組代表學校參加競賽,則A1和B1不全被選中的概率為________.14.近幾年來,首都經濟社會發展取得新成就.2014年以來,北京城鄉居民收入穩步增長.隨著擴大內需,促進消費等政策的出臺,居民消費支出全面增長,消費結構持續優化升級,城鄉居民人均可支配收入實際增速趨勢圖如圖所示.(例如2014年北京城鎮居民收入實際增速為7.3%,農村居民收入實際增速為8.2%)(1)從2014~2018這五年中任選一年,求城鎮居民收入實際增速大于7%的概率;(2)從2014~2018這五年中任選兩年,求至少有一年農村和城鎮居民收入實際增速均超過7%的概率;(3)由圖判斷,從哪年開始連續三年農村居民收入實際增速方差最大?(不需證明)高分推薦題15.(多選)(2024·江蘇常州模擬)在棱長為1的正方體ABCD-A1B1C1D1中,以8個頂點中的任意3個頂點作為頂點的三角形叫作K-三角形,12條棱中的任意2條叫作棱對,則()A.一個K-三角形在它是直角三角形的條件下,又是等腰直角三角形的概率為eq\f(1,3)B.一個K-三角形在它是等腰三角形的條件下,又是等邊三角形的概率為eq\f(1,4)C.一組棱對中2條棱所在的直線在互相平行的條件下,它們的距離為eq\r(2)的概率為eq\f(1,3)D.一組棱對中2條棱所在的直線在互相垂直的條件下,它們異面的概率為eq\f(1,2)解析版一、單項選擇題1.為了強化安全意識,某校擬在周一至周五的5天中隨機選擇2天進行緊急疏散演練,則選擇的2天恰好是連續2天的概率是()A.eq\f(2,5) B.eq\f(3,5)C.eq\f(3,10) D.eq\f(1,5)解析:由題意,某校擬在周一至周五的5天中隨機選擇2天進行緊急疏散演練,可得樣本點的總數為n=Ceq\o\al(2,5)=10,其中選擇的2天恰好為連續2天包含的樣本點個數為m=4,所以選擇的2天恰好是連續2天的概率是P=eq\f(m,n)=eq\f(4,10)=eq\f(2,5).故選A.答案:A2.從正六邊形的6個頂點中隨機選擇4個頂點,則以它們作為頂點的四邊形是矩形的概率等于()A.eq\f(1,10) B.eq\f(1,8)C.eq\f(1,6) D.eq\f(1,5)解析:在正六邊形中,6個頂點選取4個,種數為15.選取的4點能構成矩形的,只有對邊的4個頂點(例如AB與DE),共有3種,∴所求概率為eq\f(3,15)=eq\f(1,5).答案:D3.《易經》是中國傳統文化中的精髓.如圖是易經先天八卦圖,每一卦由三根線組成(“”表示一根陽線,“”表示一根陰線),現從八卦中任取兩卦,這兩卦的陽線數目相同的概率為()A.eq\f(1,14)B.eq\f(1,7)C.eq\f(3,14)D.eq\f(3,28)解析:從八卦中任取兩卦,樣本點總數n=Ceq\o\al(2,8)=28,這兩卦的陽線數目相同的樣本點有6種,分別為(兌,巽),(兌,離),(巽,離),(坎,艮),(艮,震),(坎,震),∴這兩卦的陽線數目相同的概率為P=eq\f(6,28)=eq\f(3,14).答案:C4.在二行四列的方格棋盤上沿骰子的某條棱翻動骰子(相對面上分別標有1點和6點,2點和5點,3點和4點).開始時,骰子如圖1那樣擺放,朝上的點數是2,最后翻動到如圖2所示位置.現要求翻動次數最少,則最后骰子朝上的點數為1的概率為()圖1圖2A.eq\f(1,6)B.eq\f(1,4)C.eq\f(1,3)D.eq\f(1,2)解析:翻轉的路徑有4種:①右→右→右→下,最后朝上的是4;②右→右→下→右,最后朝上的是1;③右→下→右→右,最后朝上的是3;④下→右→右→右,最后朝上的是1.故最后骰子朝上的點數為1的概率為eq\f(1,2).答案:D5.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數的和”,如30=7+23.在不超過30的素數中,隨機選取兩個不同的數,其和等于30的概率是()A.eq\f(1,12)B.eq\f(1,14)C.eq\f(1,15)D.eq\f(1,18)解析:不超過30的素數有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數,共有Ceq\o\al(2,10)=45(種)方法,因為7+23=11+19=13+17=30,所以隨機選取兩個不同的數,其和等于30的有3種方法,故所求概率為eq\f(3,45)=eq\f(1,15).故選C.答案:C6.整數集就像一片浩瀚無邊的海洋,充滿了無盡的奧秘.古希臘數學家畢達哥拉斯發現220和284具有如下性質:220的所有真因數(不包括本身的因數)之和恰好等于284,同時284的所有真因數之和也等于220,他把具有這種性質的兩個整數叫作一對“親和數”,“親和數”的發現掀起了無數數學愛好者的研究熱潮.已知220和284,1184和1210,2924和2620是3對“親和數”,把這六個數隨機分成兩組,一組2個數,另一組4個數,則220和284在同一組的概率為()A.eq\f(1,15)B.eq\f(2,5)C.eq\f(7,15)D.eq\f(1,5)解析:由題意可得一共有Ceq\o\al(2,6)種分組方法,若要滿足220和284在同一組,則分兩種情況討論:①220和284在2個數這一組中,有Ceq\o\al(2,2)種分組方法,②220和284在4個數這一組中,有Ceq\o\al(2,4)種分組方法.故所求概率P=eq\f(C\o\al(2,2)+C\o\al(2,4),C\o\al(2,6))=eq\f(7,15).答案:C7.(2024·河南新鄉高三模擬)連續擲三次骰子,先后得到的點數分別為x,y,z,那么點P(x,y,z)到原點O的距離不超過3的概率為()A.eq\f(4,27)B.eq\f(7,216)C.eq\f(11,72)D.eq\f(1,6)解析:點P(x,y,z)到原點O的距離不超過3,則eq\r(,x2+y2+z2)≤3,即x2+y2+z2≤9,連續擲三次骰子,得到的點的坐標共有6×6×6=216(個),其中(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1)滿足條件,則點P(x,y,z)到原點O的距離不超過3的概率為P=eq\f(7,216).故選B.答案:B8.2020年11月5日—11月10日,在上海國家會展中心舉辦了第三屆中國國際進口博覽會,其中的“科技生活展區”設置了各類與人們生活息息相關的科技專區.現從“高檔家用電器”“智能家居”“消費電子”“服務機器人”“人工智能及軟件技術”五個專區中選擇兩個專區參觀,則選擇的兩個專區中包括“人工智能及軟件技術”專區的概率是()A.eq\f(1,10)B.eq\f(3,10)C.eq\f(2,5)D.eq\f(3,5)解析:分別記“高檔家用電器”“智能家居”“消費電子”“服務機器人”“人工智能及軟件技術”五個專區為A,B,C,D,E;從這五個專區中選擇兩個專區參觀,所包含的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10個基本事件;選擇的兩個專區中包括“人工智能及軟件技術”專區(即E專區),所對應的基本事件有AE,BE,CE,DE,共4個基本事件.因此,選擇的兩個專區中包括“人工智能及軟件技術”專區的概率是P=eq\f(4,10)=eq\f(2,5).答案:C9.(2024·福建南安僑光中學第一次階段考)如圖所示的圖形中,每個三角形上各有一個數字,若六個三角形上的數字之和為21,則稱該圖形是“和諧圖形”.已知其中四個三角形上的數字之和為14,現從1,2,3,4,5這五個數中任取兩個數標在另外兩個三角形上,則恰好使該圖形為“和諧圖形”的概率為()A.eq\f(1,10) B.eq\f(1,5)C.eq\f(3,10) D.eq\f(3,20)解析:由條件可知,要使該圖形為“和諧圖形”,則從1,2,3,4,5這五個數中任取兩個數,這兩個數的和是7.這五個數中任選兩個數包含(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5),共有10種情況,其中和為7的有(2,5),(3,4)兩種情況,所以恰好使該圖形為“和諧圖形”的概率P=eq\f(2,10)=eq\f(1,5).答案:B二、多項選擇題10.(2024·山東師大附中模擬)濟南市組織2023年度高中校園足球比賽,共有10支球隊報名參賽.比賽開始前將這10支球隊分成兩個小組,每小組5支球隊,其中獲得2022年度冠、亞軍的兩支球隊分別在第一小組和第二小組,剩余8支球隊抽簽分組.已知這8支球隊中包含甲、乙兩隊,記“甲隊分在第一小組”為事件M1,“乙隊分在第一小組”為事件M2,“甲、乙兩隊分在同一小組”為事件M3,則()A.P(M1)=eq\f(1,2)B.P(M3)=eq\f(3,7)C.P(M1)+P(M2)=P(M3)D.事件M1與事件M3相互獨立解析:對于A,因為甲隊分在第一小組和第二小組的概率相等,且兩種情況等可能,所以P(M1)=eq\f(1,2),故正確;對于B,8支球隊抽簽分組共有Ceq\o\al(4,8)=70(種)不同方法,甲、乙兩隊分在同一小組共有Ceq\o\al(2,6)×Aeq\o\al(2,2)=30(種)不同方法,所以甲、乙兩隊分在同一小組的概率P(M3)=eq\f(30,70)=eq\f(3,7),故正確;對于C,因為P(M1)=P(M2)=eq\f(1,2),所以P(M1)+P(M2)=1≠P(M3),故錯誤;對于D,因為P(M1M3)=eq\f(C\o\al(2,6),C\o\al(4,8))=eq\f(3,14),P(M1)·P(M3)=eq\f(1,2)×eq\f(3,7)=eq\f(3,14),所以P(M1M3)=P(M1)·P(M3),所以事件M1與事件M3相互獨立,故正確.故選ABD.答案:ABD11.(2024·山東泰安模擬)算盤是我國古代一項偉大的發明,是一類重要的計算工具.下圖是一把算盤的初始狀態,自右向左,分別表示個位、十位、百位、千位……上面一粒珠子(簡稱上珠)代表5,下面一粒珠子(簡稱下珠)代表1,五粒下珠的大小等于同組一粒上珠的大小.例如,個位撥動一粒上珠、十位撥動一粒下珠至梁上,表示數字15.現將算盤的個位、十位、百位、千位分別隨機撥動一粒珠子至梁上,設事件A=“表示的四位數能被3整除”,B=“表示的四位數能被5整除”,則()A.P(A)=eq\f(3,8) B.P(B)=eq\f(1,3)C.P(A∪B)=eq\f(11,16) D.P(AB)=eq\f(3,16)解析:只撥動一粒珠子至梁上,因此數字只表示1或5,四位數的個數是24=16,能被3整除的四位數中數字1和5各出現2次,因此滿足條件的四位數的個數是Ceq\o\al(2,4)=6,所以P(A)=eq\f(6,16)=eq\f(3,8).能被5整除的四位數的個數為23=8,P(B)=eq\f(8,16)=eq\f(1,2),能被5整除且能被3整除的四位數的個位是5,因此滿足這個條件的四位數的個數是Ceq\o\al(1,3)=3,概率為P(AB)=eq\f(3,16),P(A∪B)=P(A)+P(B)-P(AB)=eq\f(3,8)+eq\f(1,2)-eq\f(3,16)=eq\f(11,16).故選ACD.答案:ACD三、填空題與解答題12.如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個點中隨機選取3個點,則這3個點與原點O共面的概率為________.解析:從6個點中隨機選取3個點,共有Ceq\o\al(3,6)=20(種),在平面Oxy上有Ceq\o\al(3,4)=4(種)情況與原點O共面,在平面Ozx上有Ceq\o\al(3,4)=4(種)情況與原點O共面,在平面Oyz上有Ceq\o\al(3,4)=4(種)情況與原點O共面,所以這3個點與原點O共面的共有4+4+4=12(種)情況,所以這3個點與原點O共面的概率為eq\f(12,20)=eq\f(3,5).答案:eq\f(3,5)13.(2024·北京海淀區模擬)現有7名數理化成績優秀者,分別用A1,A2,A3,B1,B2,C1,C2表示,其中A1,A2,A3的數學成績優秀,B1,B2的物理成績優秀,C1,C2的化學成績優秀.從中選出數學、物理、化學成績優秀者各1名,組成一個小組代表學校參加競賽,則A1和B1不全被選中的概率為________.解析:從這7人中選出數學、物理、化學成績優秀者各1名,所有可能的結果組成的12個基本事件為(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2).設“A1和B1不全被選中”為事件N,則其對立事件eq\x\to(N)表示“A1和B1全被選中”,由于eq\x\to(N)={(A1,B1,C1),(A1,B1,C2)},所以P(eq\x\to(N))=eq\f(2,12)=eq\f(1,6),由對立事件的概率計算公式,得P(N)=1-P(eq\x\to(N))=1-eq\f(1,6)=eq\f(5,6).答案:eq\f(5,6)14.近幾年來,首都經濟社會發展取得新成就.2014年以來,北京城鄉居民收入穩步增長.隨著擴大內需,促進消費等政策的出臺,居民消費支出全面增長,消費結構持續優化升級,城鄉居民人均可支配收入實際增速趨勢圖如圖所示.(例如2014年北京城鎮居民收入實際增速為7.3%,農村居民收入實際增速為8.2%)(1)從2014~2018這五年中任選一年,求城鎮居民收入實際增速大于7%的概率;(2)從2014~2018這五年中任選兩年,求至少有一年農村和城鎮居民收入實際增速均超過7%的概率;(3)由圖判斷,從哪年開始連續三年農村居民收入實際增速方差最大?(不需證明)解:(1)設“城鎮居民收入實際增速大于7%”為事件A,由題圖可知,這五年中2014,2015,2016這三年城鎮居民收入實際增速大于7%,所以P(A)=eq\f(3,5).(2)設“至少有一年農村和城鎮居民收入實際增速均超過7%”為事件B,這五年中任選兩年,有(2014,20
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入式開發職業生涯交流試題及答案
- 測試執行中常見的錯誤與解決方案試題及答案
- 探索軟件缺陷管理的技巧試題及答案
- 公路交通工程試車試題及答案
- 四級計算機考試日常練習試題及答案
- 安全生產維修管理制度
- 廣東會所店長管理制度
- 出口企業備案管理制度
- 公路視頻監控管理制度
- 地面保潔人員管理制度
- 2024草原承包合同書
- 鋼結構閣樓合同范例
- 2022年首都師范大學計算機科學與技術專業《數據結構與算法》科目期末試卷A(有答案)
- 福建省福州教育學院附屬中學2025屆高考數學四模試卷含解析
- 全國扶貧開發信息系統業務管理子系統用戶操作手冊20171110(升級版)
- 4.1自由擴散和協助擴散課件高一上學期生物人教版必修1
- 主動脈夾層完整版課件
- 《飛向太空的航程》名師課件
- 科學普及講座模板
- 高標準農田 建設規范DB41-T 2412-2023
- 國開《Windows網絡操作系統管理》形考任務5-配置DNS服務實訓
評論
0/150
提交評論