




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省成都市新都區高考數學四模試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.52.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個3.已知集合,則元素個數為()A.1 B.2 C.3 D.44.已知等差數列中,,則()A.20 B.18 C.16 D.145.已知函數,,若存在實數,使成立,則正數的取值范圍為()A. B. C. D.6.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.7.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.8.若復數滿足,則()A. B. C.2 D.9.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.10.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生11.已知集合,則等于()A. B. C. D.12.某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.140二、填空題:本題共4小題,每小題5分,共20分。13.函數在區間內有且僅有兩個零點,則實數的取值范圍是_____.14.已知,若的展開式中的系數比x的系數大30,則______.15.在△ABC中,a=3,,B=2A,則cosA=_____.16.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)若,,,求證:.18.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.19.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.20.(12分)已知函數.(1)解不等式:;(2)求證:.21.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.22.(10分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:由已知,-2a+i=1-bi,根據復數相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點:復數的代數運算,復數相等的充要條件,復數的模2、B【解析】
根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.3、B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數為2,故選:B.【點睛】本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數形結合的思想,屬于基礎題.4、A【解析】
設等差數列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設等差數列的公差為.由得,解得.所以.故選:A【點睛】本題主要考查了等差數列的基本量求解,屬于基礎題.5、A【解析】
根據實數滿足的等量關系,代入后將方程變形,構造函數,并由導函數求得的最大值;由基本不等式可求得的最小值,結合存在性問題的求法,即可求得正數的取值范圍.【詳解】函數,,由題意得,即,令,∴,∴在上單調遞增,在上單調遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.【點睛】本題考查了導數在求函數最值中的應用,由基本不等式求函數的最值,存在性成立問題的解法,屬于中檔題.6、D【解析】
三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.7、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功8、D【解析】
把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.9、D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.10、C【解析】
根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.11、C【解析】
先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎題.12、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.14、2【解析】
利用二項展開式的通項公式,二項式系數的性質,求得的值.【詳解】展開式通項為:且的展開式中的系數比的系數大,即:解得:(舍去)或本題正確結果:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.15、【解析】
由已知利用正弦定理,二倍角的正弦函數公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數公式在解三角形中的應用,屬于基礎題.16、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,,所以,,,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.18、(1)見解析(2)【解析】
(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.19、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.20、(1);(2)見解析.【解析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質,,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.【點睛】本題考查了絕對值不等式得求解和恒成立問題,考查了學生分類討論,轉化劃歸,數學運算能力,屬于中檔題.21、(1)證明見解析;(2)是,理由見解析.【解析】
(1)根據判別式即可證明.(2)根據向量的數量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 供電企業工具管理制度
- 供電公司彩燈管理制度
- 供電公司門店管理制度
- 供銷社常態化管理制度
- 商場禮儀培訓講課件
- 保健食品培訓管理制度
- 保安臨時收費管理制度
- 保安公司運營管理制度
- 保安夜班人員管理制度
- 保安巡邏操作管理制度
- 2024中華人民共和國文物保護法詳細解讀課件
- 空調oem合同范本
- 四大名著文學常識單選題100道及答案解析
- 2023-2024年福建高中物理會考試卷(福建會考卷)
- 六下第14課《擴音系統的優化》教案 浙教版(2023)信息科技
- 新疆烏魯木齊市天山區2023-2024學年六年級下學期期末英語試卷
- 薯蕷皂苷對腫瘤免疫調節的分子靶點探索
- 儲能項目工具【Excel計算表】用戶側儲能電站投資收益分析表(修正版)
- 2024北京西城區初二(下)期末物理及答案
- 國家開放大學(浙江)地域文化(本)作業1-5
- 福建省龍巖市名校中考數學模擬預測題及答案解析
評論
0/150
提交評論