




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省玉第一中高考數學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.2.已知集合,集合,則A. B.或C. D.3.如圖,在三棱錐中,平面,,現從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.4.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.25.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于6.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心7.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.8.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.10.復數在復平面內對應的點為則()A. B. C. D.11.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.12.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.14.已知數列滿足對任意,若,則數列的通項公式________.15.函數的值域為_________.16.已知實數、滿足,且可行域表示的區域為三角形,則實數的取值范圍為______,若目標函數的最小值為-1,則實數等于______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)證明:函數在上存在唯一的零點;(2)若函數在區間上的最小值為1,求的值.18.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.19.(12分)在平面直角坐標系中,直線的參數方程為(為參數,).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.20.(12分)某公司欲投資一新型產品的批量生產,預計該產品的每日生產總成本價格)(單位:萬元)是每日產量(單位:噸)的函數:.(1)求當日產量為噸時的邊際成本(即生產過程中一段時間的總成本對該段時間產量的導數);(2)記每日生產平均成本求證:;(3)若財團每日注入資金可按數列(單位:億元)遞減,連續注入天,求證:這天的總投入資金大于億元.21.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.22.(10分)已知函數.(1)若在上是減函數,求實數的最大值;(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.2、C【解析】
由可得,解得或,所以或,又,所以,故選C.3、A【解析】
根據線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數,再求出四個面中任選2個的方法數,從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關鍵是求出基本事件的個數.4、B【解析】
求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.5、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.6、A【解析】
根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.7、A【解析】
對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數的四則運算及虛部的概念,計算過程要注意.8、B【解析】
化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.9、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.10、B【解析】
求得復數,結合復數除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數及其坐標的對應,考查復數的除法運算,屬于基礎題.11、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.12、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.14、【解析】
由可得,利用等比數列的通項公式可得,再利用累加法求和與等比數列的求和公式,即可得出結論.【詳解】由,得,數列是等比數列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數列的通項公式,遞推公式轉化為等比數列是解題的關鍵,利用累加法求通項公式,屬于中檔題.15、【解析】
利用換元法,得到,利用導數求得函數的單調性和最值,即可得到函數的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數,在為減函數,又,,,故函數的值域為:.【點睛】本題主要考查了三角函數的最值,以及利用導數研究函數的單調性與最值,其中解答中合理利用換元法得到函數,再利用導數求解函數的單調性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.16、【解析】
作出不等式組對應的平面區域,利用目標函數的幾何意義,結合目標函數的最小值,利用數形結合即可得到結論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數可視為,則為斜率為1的直線縱截距的相反數,該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)求解出導函數,分析導函數的單調性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據導函數零點,判斷出的單調性,從而可確定,利用以及的單調性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區間上單調遞增,在區間上單調遞減,∴函數在上單調遞增.又,令,,則在上單調遞減,,故.令,則所以函數在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數在上單調遞增.∴當時,,單調遞減;當時,,單調遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調遞減函數,方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數的值為.【點睛】本題考查函數與導數的綜合應用,其中涉及到判斷函數在給定區間上的零點個數以及根據函數的最值求解參數,難度較難.(1)判斷函數的零點個數時,可結合函數的單調性以及零點的存在性定理進行判斷;(2)函數的“隱零點”問題,可通過“設而不求”的思想進行分析.18、(1):,:;(2)【解析】
(1)由直線參數方程消去參數即可得直線的普通方程,根據極坐標方程和直角坐標方程互化的公式即可得曲線的直角坐標方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數得直線的普通方程為,由得,曲線的直角坐標方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數方程、極坐標方程和直角坐標方程的互化,考查了直線與圓的位置關系,屬于中檔題.19、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據極坐標與直角坐標的轉化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結合三角函數的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數方程、普通方程、極坐標方程的互化以及根據曲線上一點到直線距離的最值求參數,難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優先考慮將點的坐標設為參數方程的形式,然后再去求解.20、(1);(2)證明見解析;(3)證明見解析.【解析】
(1)求得函數的導函數,由此求得求當日產量為噸時的邊際成本.(2)將所要證明不等式轉化為證明,構造函數,利用導數證得,由此證得不等式成立.(3)利用(2)的結論,判斷出,由此結合對數運算,證得.【詳解】(1)因為所以當時,(2)要證,只需證,即證,設則所以在上單調遞減,所以所以,即;(3)因為又由(2)知,當時,所以所以所以【點睛】本小題主要考查導數的計算,考查利用導數證明不等式,考查放縮法證明數列不等式,屬于難題.21、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設出直線方程,聯立方程組,用韋達定理和弦長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于量子通信的動態密鑰分發網絡研究-洞察闡釋
- 紙漿木材倉單質押貸款合同
- 魚塘水庫承包合同
- 車輛抵押擔保服務與風險評估協議
- 專業車庫租賃與物業服務合同
- 企業品牌戰略策劃合同
- 餐飲行業廚師技能競賽舉辦及獎勵合同
- 車輛抵押擔保保險代理服務合同
- 車輛維修保養連鎖店股權轉讓協議書
- 建筑設計插畫制作與推廣合同
- T/CCMA 0137-2022防撞緩沖車
- 全國統一考試考務人員網上培訓考試試題及答案
- CJ/T 259-2007城鎮燃氣用二甲醚
- MOOC 隔網的智慧-乒羽兩項-西南交通大學 中國大學慕課答案
- JTT327-2016 公路橋梁伸縮裝置通用技術條件
- 赫章縣水土保持規劃
- 乳膠漆知識培訓
- 端午放假通知海報模板
- 土石方場地平整施工組織方案
- 外周血單個核細胞分離方法探討
- LED亮度自動調節系統設計
評論
0/150
提交評論