




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省漢中中學2025屆高考數學二模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.2.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.若時,,則的取值范圍為()A. B. C. D.4.已知正項等比數列的前項和為,且,則公比的值為()A. B.或 C. D.5.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.6.設非零向量,,,滿足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件7.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.48.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.9.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.10.函數在內有且只有一個零點,則a的值為()A.3 B.-3 C.2 D.-211.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數和為______,常數項為______.14.某公司生產甲、乙兩種桶裝產品.已知生產甲產品1桶需耗原料1千克、原料2千克;生產乙產品1桶需耗原料2千克,原料1千克.每桶甲產品的利潤是300元,每桶乙產品的利潤是400元.公司在生產這兩種產品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產計劃,從每天生產的甲、乙兩種產品中,公司共可獲得的最大利潤是__________元.15.的展開式中,x5的系數是_________.(用數字填寫答案)16.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求不等式的解集;(2)若對任意成立,求實數的取值范圍.18.(12分)某商場舉行優惠促銷活動,顧客僅可以從以下兩種優惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優惠如下表:(注:所有小球僅顏色有區別)紅球個數3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)設函數.(1)當時,解不等式;(2)設,且當時,不等式有解,求實數的取值范圍.20.(12分)選修4-4:坐標系與參數方程在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.(1)寫出直線的普通方程與曲線的直角坐標方程;(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.21.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.22.(10分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.2、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.3、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.4、C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數列,故,所以,故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.5、B【解析】
根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.6、C【解析】
利用數量積的定義可得,即可判斷出結論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.【點睛】本題主要考查平面向量數量積的應用,考查推理能力與計算能力,屬于基礎題.7、C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.8、A【解析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.9、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.10、A【解析】
求出,對分類討論,求出單調區間和極值點,結合三次函數的圖像特征,即可求解.【詳解】,若,,在單調遞增,且,在不存在零點;若,,在內有且只有一個零點,.故選:A.【點睛】本題考查函數的零點、導數的應用,考查分類討論思想,熟練掌握函數圖像和性質是解題的關鍵,屬于中檔題.11、C【解析】
根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.12、A【解析】
先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】
(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.14、1元【解析】設分別生產甲乙兩種產品為桶,桶,利潤為元
則根據題意可得目標函數,作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當直線經過時,目標函數的截距最大,此時最大,
由可得,即此時最大,
即該公司每天生產的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規劃知識求利潤的最大值,根據條件建立不等式關系,以及利用線性規劃的知識進行求解是解決本題的關鍵.15、-189【解析】由二項式定理得,令r=5得x5的系數是.16、【解析】
先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區分展開式中各項系數的和與各二項式系數和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)把代入,利用零點分段討論法求解;(2)對任意成立轉化為求的最小值可得.【詳解】解:(1)當時,不等式可化為.討論:①當時,,所以,所以;②當時,,所以,所以;③當時,,所以,所以.綜上,當時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉化為最值問題求解,側重考查數學建模和數學運算的核心素養.18、(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優惠的概率,獲得8折優惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優惠的概率,該顧客獲得8折優惠的概率,故該顧客獲得7折或8折優惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因為,所以選擇方案二更為劃算.【點睛】本題考查了概率的計算,數學期望,意在考查學生的計算能力和應用能力.19、(1);(2).【解析】
(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數的取值范圍是.【點睛】本題考查絕對值不等式的求解、根據不等式有解求解參數范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數與函數最值之間的比較問題.20、(1)的普通方程為.的直角坐標方程為(2)(-1,0)或(2,3)【解析】
(1)對直線的參數方程消參數即可求得直線的普通方程,對整理并兩邊乘以,結合,即可求得曲線的直角坐標方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設點P的坐標為,由題可得:,利用兩點距離公式列方程即可求解。【詳解】解:(1)由消去參數,得.即直線的普通方程為.因為又,∴曲線的直角坐標方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設點P的坐標為,則點P到上的點的最短距離為|PQ|即,整理得,解得所以點P的坐標為(-1,0)或(2,3)【點睛】本題主要考查了參數方程化為普通方程及極坐標方程化為直角坐標方程,還考查了轉化思想及兩點距離公式,考查了方程思想及計算能力,屬于中檔題。21、(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工業廢氣凈化處理技術環保產業應用案例報告
- 安全試題及答案地震
- 安全生產試題及答案解析
- 安全工作的試題及答案
- 天然植物精油護膚品牌產品研發與創新趨勢報告
- 石油庫廠級培訓課件
- 中國功夫英語課件
- 礦山生產系統培訓
- 公交消防演練課件
- 中國兒童畫課件
- GB/T 7702.20-2008煤質顆粒活性炭試驗方法孔容積和比表面積的測定
- GB/T 4337-2015金屬材料疲勞試驗旋轉彎曲方法
- GB/T 3608-2008高處作業分級
- GB/T 12786-2006自動化內燃機電站通用技術條件
- 2023年鄭州大學嵩山地質實習
- 項目安全體系圖
- (擋土墻)砌石工程施工記錄
- 房地產租賃價值估價報告
- 材料出入庫表格范本
- 妊娠期急性脂肪肝臨床管理指南(2022版)解讀
- 呼倫貝爾農業無人機項目可行性研究報告(范文)
評論
0/150
提交評論