2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷含解析_第1頁
2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷含解析_第2頁
2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷含解析_第3頁
2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷含解析_第4頁
2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新疆伊西哈拉鎮中學高三沖刺模擬數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.292.已知是虛數單位,若,則()A. B.2 C. D.103.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.4.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.25.已知集合,,則為()A. B. C. D.6.已知數列滿足,則()A. B. C. D.7.已知復數滿足,(為虛數單位),則()A. B. C. D.38.已知,則()A.5 B. C.13 D.9.已知等比數列滿足,,則()A. B. C. D.10.已知向量,,且,則()A. B. C.1 D.211.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.12.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域是___________.14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____15.的展開式中所有項的系數和為______,常數項為______.16.已知內角的對邊分別為外接圓的面積為,則的面積為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α118.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標準方程;(2)過點A(1,0)的直線與橢圓C交于點M,N,設P為橢圓上一點,且OM+ON=t20.(12分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.21.(12分)已知函數是減函數.(1)試確定a的值;(2)已知數列,求證:.22.(10分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.2、C【解析】

根據復數模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.3、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.4、D【解析】

根據拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數形結合的數學思想方法,屬于基礎題.5、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.6、C【解析】

利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.7、A【解析】,故,故選A.8、C【解析】

先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.9、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.10、A【解析】

根據向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎題.11、A【解析】

將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.12、D【解析】

根據正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由于偶次根式中被開方數非負,對數的真數要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數定義域的求法,屬于基礎題.14、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.15、3-260【解析】

(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.16、【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、A=【解析】

運用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結果,較為簡單18、(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.19、(1)x24+【解析】試題分析:本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標準方程為x2(2)由題意知,當直線MN斜率存在時,設直線方程為y=k(x-1),M(x聯立方程x24+因為直線與橢圓交于兩點,所以Δ=16k∴x又∵OM∴因為點P在橢圓x24+即2k又∵|OM即|NM|<4化簡得:13k4-5k2∵t2=1-當直線MN的斜率不存在時,M(1,??62∴t∈[-1,??考點:橢圓的標準方程及其幾何性質、直線與橢圓的位置關系.20、(1)(2)三個零點【解析】

(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結果;(2)當時先對函數求導研究函數的單調性可得到函數有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數的極大值點,是函數的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數的零點,導數的綜合應用.在研究函數零點時,有一種方法是把函數的零點轉化為方程的解,再把方程的解轉化為函數圖象的交點,特別是利用分離參數法轉化為動直線與函數圖象交點問題,這樣就可利用導數研究新函數的單調性與極值,從而得出函數的變化趨勢,得出結論.21、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導得,由是減函數得,對任意的,都有恒成立,構造函數,通過求導判斷它的單調性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數,且可得,當時,,則,即,兩邊同除以得,,即,從而,兩邊取對數,然后再證明恒成立即可,構造函數,,通過求導證明即可.【詳解】解:(Ⅰ)的定義域為,.由是減函數得,對任意的,都有恒成立.設.∵,由知,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數,且可得,當時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調遞增,∴在上單調遞減,而,∴當時,恒成立,∴在上單調遞減,即時,,∴當時,.∵,∴當時,,即②.綜上①②可得,.【點睛】本題考查了導數與函數的單調性的關系,考查了函數的最值,考查了構造函數的能力,考查了邏

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論