




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省A佳經典聯考試卷2025屆高考數學一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數若關于的方程有四個實數解,其中,則的取值范圍是()A. B. C. D.2.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.3.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.4.已知雙曲線:的焦距為,焦點到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.5.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數為()A.4 B.3 C.2 D.16.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.7.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.8.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.9.己知函數若函數的圖象上關于原點對稱的點有2對,則實數的取值范圍是()A. B. C. D.10.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.11.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.012.的展開式中的系數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列滿足,,則該數列的前5項的和為______________.14.在中,,是的角平分線,設,則實數的取值范圍是__________.15.已知,若,則a的取值范圍是______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.18.(12分)設函數(其中),且函數在處的切線與直線平行.(1)求的值;(2)若函數,求證:恒成立.19.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.20.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸的路程為S(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.21.(12分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.22.(10分)已知函數的圖象在處的切線方程是.(1)求的值;(2)若函數,討論的單調性與極值;(3)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
畫出函數圖像,根據圖像知:,,,計算得到答案.【詳解】,畫出函數圖像,如圖所示:根據圖像知:,,故,且.故.故選:.【點睛】本題考查了函數零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.2、D【解析】
根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.3、D【解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.4、A【解析】
利用雙曲線:的焦點到漸近線的距離為,求出,的關系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點睛】本題考查雙曲線的簡單性質的應用,構建出的關系是解題的關鍵,考查計算能力,屬于中檔題.5、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.6、D【解析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.7、A【解析】
根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.8、A【解析】
畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.9、B【解析】
考慮當時,有兩個不同的實數解,令,則有兩個不同的零點,利用導數和零點存在定理可得實數的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數解.令,則在有兩個不同的零點.又,當時,,故在上為增函數,在上至多一個零點,舍.當時,若,則,在上為增函數;若,則,在上為減函數;故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數,所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【點睛】本題考查函數的零點,一般地,較為復雜的函數的零點,必須先利用導數研究函數的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.10、A【解析】
根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.11、C【解析】
畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C【點睛】求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.12、C【解析】由題意,根據二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數、整數冪的運算等有關方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應用中,注意區分二項式系數與系數,先求出通項公式,再根據所求問題,通過確定未知的次數,求出,將的值代入通項公式進行計算,從而問題可得解.二、填空題:本題共4小題,每小題5分,共20分。13、31【解析】設,可化為,得,,,14、【解析】
設,,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設,,,由得:,化簡得,由于,故.故答案為:【點睛】本題考查了解三角形綜合,考查了學生轉化劃歸,綜合分析,數學運算能力,屬于中檔題.15、【解析】
函數等價為,由二次函數的單調性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數連續,可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點睛】本題考查分段函數的單調性的判斷和運用:解不等式,考查轉化思想和運算能力,屬于中檔題.16、【解析】
由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.18、(1)(2)證明見解析【解析】
(1)求導得到,解得答案.(2)變形得到,令函數,求導得到函數單調區間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數,,令解得,當時,時.函數在上單調遞增,在上單調遞減,,而函數在區間上單調遞增,,,即,即,恒成立.【點睛】本題考查了根據切線求參數,證明不等式,意在考查學生的計算能力和轉化能力,綜合應用能力.19、(1)(2)【解析】
(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.20、(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】
(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數的模型,考查了分類討論的思想,屬于基礎題.21、(1):,:;(2)【解析】
(1)根據點斜式寫出直線的直角坐標方程,并轉化為極坐標方程,利用,將曲線的參數方程轉化為普通方程.(2)將直線的參數方程代入曲線的普通方程,結合直線參數的幾何意義以及根與系數關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數方程為(為參數,為的傾斜角),代入曲線的普通方程,得.設,對應的參數分別為,,所以,在的兩側.則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數方程化為普通方程,考查直線參數方程,考查直線參數的幾何意義,屬于中檔題.22、(1);(2)單調遞減區間為,單調遞增區間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點既在切線上又在曲線上得一方程,再根據斜率等于該點的導數再列一方程,解方程組即可;(2)先對求導數,根據導數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司月度獎懲活動方案
- 公司消防比賽活動方案
- 公司盆栽種植活動方案
- 公司相親對象活動方案
- 公司規模科普活動方案
- 公司現場招聘會策劃方案
- 公司組織溫泉玩活動方案
- 公司活動方案獎勵方案
- 公司行政生日會策劃方案
- 公司教育活動策劃方案
- 2025年廣東省廣州市南沙區中考二模道德與法治試題
- 2025屆重慶市普通高中學業水平選擇性考試預測歷史試題(含答案)
- 2025-2030中國眼底照相機行業市場發展趨勢與前景展望戰略研究報告
- 2024年深圳市大鵬新區區屬公辦中小學招聘教師真題
- 人教版小學語文四年級下冊作文范文2
- 大學語文試題及答案琴
- 紅十字會資產管理制度
- 2025屆四川成都錦江區數學七下期末質量檢測試題含解析
- 無人機飛行器結構與性能試題及答案
- 廣東深圳2025年公開招聘農村(村務)工作者筆試題帶答案分析
- 《蔚來汽車》課件
評論
0/150
提交評論