




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Lesson4QuantumComputing(第四課量子計算)
Vocabulary(詞匯)ImportantSentences(重點句)QuestionsandAnswers(問答)Problems(問題)ReadingMaterial(閱讀材料)
May18,2000—Theworldofquantummechanicsgoesagainstthegrainofeverydayexperience.It’san“AliceinWonderland”realmbeyondtheonesandzeroesofclassicalcomputing.Butifwecanfigureouthowtoputthisworldtowork,itwouldleadtoatechnologicalquantumleap,allowingustosolveproblemsthatwouldtakemillionsofyearstofigureoutusingpresent-daycomputers.AndthathashugeimplicationsfortheInternet—indeed,foranymeansofcommunicatingdata.
Present-daycomputingrestsonafoundationofbits,withinformationencodedwithinelectroniccircuitryasaseriesofonesandzeroes.Butascircuitsbecomemoreandmoreminiaturized,computerscomeclosertothefuzzythresholdofquantumphysics:Quantumobjects,suchaselectronsandothersubatomicparticles,canbethoughtofasexistinginmultiplestatessimultaneously:“up”aswellas“down”…“1”aswellas“0.”[1]Whenyouobserveaquantumobject,youtakeasnapshotofoneofthosestates—butyoualsodestroyquantuminformation.
Thisquantumrealmservesasthelowerlimitforclassicalcomputing.The“one-or-zero”conceptwon’tworkinaworldoffuzzy“one-and-zero”bits.
Butthisproperty,knownas“superposition,”opensthewaytoacompletelydifferentapproachtocomputing.Inthisapproach,onequantumbit—orqubit—enablesyoutomanipulatetwovaluesatthesametime.Asyoustringtogethermoreandmorequbits,thepowergrowsexponentially.Ifyoulinktwoqubitstogether,youcanworkwithfourvaluesatthesametime.Threequbitscanworkwitheightvalues,andsoon.Ifyoucangetupto40qubits,youcouldworkwithmorethanatrillionvaluessimultaneously.1Code-breaking
Whatcouldsuchcomputersbeusedfor?Oneimportantapplicationwouldbetofindtheprimefactorsofverylargenumbers.
Thisisn’tjustanemptymathematicalexercise.Primefactorizationhappenstobethefoundationforsecuredatacommunications.It’srelativelyeasytomultiplytwoprimenumberstogether(7,817and7,333,forexample),butnoonehasfoundaneasywaytodothecalculationinreverse—thatis,figureoutwhichtwoprimenumberscanbemultipliedtogethertoequal57,322,061.
Thisiswhatmakespublic-keycryptographypossible.Otherpeoplecansendyoumessagesthatarecodedusingtheproductoftwoprimes,butthatsecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.[2]
Yourcomputerautomaticallyhandlesallthiscodinganddecodinginasecureelectronictransaction.That’swhatprotectsyourcreditcardinformationfromelectroniceavesdropperswhenyoubuysomethingovertheInternet.Butsupposetheeavesdroppershadquantumcomputers:Withallthatcomputingpower,theycouldfigureouttheprimefactorsofevenincrediblylargenumbers—andcrackthecode.Thus,thedevelopmentofquantumcomputerswouldrequireacompletechangeinthemethodsusedtoprotectinformationtransmittedovertheInternetandother“secure”communicationslinks.2Code-making
Fortunatelyforcode-makers,quantumcomputingtechniquescouldbeusedaswelltoguaranteesecurity(atleastwithinanegligiblysmallprobability).Quantumcryptographyrestsonthefactthatquantuminformationcannotbemeasuredwithoutdisruptingit.Thesecret-messagesoftwarecouldbebuiltsothatattemptstoeavesdroponamessagewouldsetoffanalarm—andautomaticallyshutdowntransmission.
Anotherfeatureusefulforquantumcryptography—andessentialforquantumcomputing—isabizarrecharacteristiccalledentanglement.Twoquantumobjectscanbelinkedtogethersothatifyouobservetheresultofaninteractionwithoneoftheobjects,youcanfigureoutwhatthestateoftheotherobjectisaswell.[3]
Theentanglementholdsevenifthetwoobjectsarewidelyseparated.
Thismakespossiblean“action-at-a-distance”phenomenonoftencalledquantumteleportation—atermthatoftenleadspeopletothinkof“StarTrek”transporters.Inreality,what’sbeingteleportedisinformationaboutaquantumobject,nottheobjectitself.
Twopeoplecouldencodeinformation,tradeitbackandforth,andreconstructtheinformationusingentangledquantumsystems.Evenifeavesdroppersinterceptthecodedinformation,theycouldn’treadthemessagebecausetheywouldn’tbepartoftheentangledsystem.3MakingItReal
Whatformsdothesequantumsystemstake?Photons,ionsandatomicnucleialreadyarebeingputtowork,withthespinofthoseparticlesrepresentingonesandzeroessimultaneously.
ResearchersattheLosAlamosNationalLaboratoryhavedemonstratedaquantumcryptographyschemethatworksover30miles(48kilometers)ofopticalfiber.AttheNationalInstituteofStandardsandTechnology,twotrappedberylliumionshavebeenwiredtogetherthroughentanglement,potentiallyrepresentingtheworld’sfirsttwo-qubitcomputationaldevice.
Inadditiontoiontraps,nuclearmagneticresonancedevicesarehelpingscientistsusethespinofatomicnucleiinquantumcomputingexperiments.Thereareevenproposalstomakequantumcomputingdevicesoutofgoodoldsilicon.
PeterShor,anaward-winningmathematicianatAT&TLabs,saysitmaybepossibletodevelopa30-qubitcomputerwithinthenextdecade—butthatwouldbejustthestart.Itwouldtakehundredsorthousandsofnetworkedqubitstosolveproblemsbeyondthecapabilityofclassicalcomputers.Nooneknowswhenwe’llbeabletoreachthatpoint.Infact,someresearchersworrythatthetechnicalhurdlesaretoogreattoovercome.4ProblemsandSolutions
Gettingtheinformationout:Sincemeasurementdestroysquantuminformation,howdoyouactuallygettheresultsofyourcalculations?Theoutputfromaquantumcomputermightwellbeanalogoustoaninterferencepattern,Shorsays:Thecorrectanswerwouldbebuiltupthroughconstructiveinterference,whileincorrectanswerswouldbecanceledoutthroughdestructiveinterference.[4]
Scalingupthesystem:TheNISTexperimentshowsthatqubitscanbelinkedtogetherthroughentanglement,butcansuchnetworksbescaledupinsize?Quantuminformationhasatendencyto“leak”intotheoutsideenvironment,inaprocessknownasdecoherence.Thus,thequantumsystemhastobeisolatedfromoutsideinfluenceasmuchaspossible.
Compensatingforerrors:Nomatterwhatyoudo,quantumoperationsareinherently“noisy”.Howdoyoucorrectforerrors?Itturnsoutthatyoucanadaptclassicalerror-correctingtechniquestoquantumsystemstomakethemfault-tolerant.Iftheerrorrateislessthanonepartper10,000,youcanmakequantumcomputersworkeventhoughtheindividualoperationsyou’reapplyingtoyourqubitsaren’tperfectlyaccurate,Shorsays.
Ifwedodevelopworkablequantumcomputers,theywouldcomeinhandyformuchmorethancode-breakingandcode-making.Theycouldmakeiteasiertofindsolutionstoother“needle-in-a-haystack”problems—problemsforwhichnobetterapproachisknownthanexhaustivelysearchingalargesetofpossiblesolutionsforthecorrectone.[5]Wecouldgainnewinsightsintohowmolecules,atomsandsubatomicparticlesbehave—unlockingsecretsofthequantumworlditself.
Butintruth,wecan’timagineallthepotentialusesforquantumcomputingtoday—anymorethanthecreatorsofthefirstdigitalcomputers,ahalf-centuryago,couldhaveimaginedwheretheirpioneeringworkwouldeventuallylead.
1.quantumleapn.[物]量子躍遷,<喻>躍進,巨大突破。
2.implicationn.牽連,糾纏;含蓄,含意,暗示;【數】蘊涵(式);?[pl.]推斷;結論。
3.subatomicadj.小于原子的;亞原子的,次原子的。
4.snapshotn.快照,快相;簡短描述;一晃眼;【計】抽點打印;瞬象。
5.superpositionn.重疊,重合,疊合。
6.qubit=quantumbit量子位。Vocabulary
7.factorizationn.因子分解(法),因式分解;編制計算程序。
8.cryptographyn.密碼使用法,密碼系統;密碼術。
9.deciphervt.譯解(密碼等),解釋n.密電譯文。
10.negligiblyadj.可以忽略的,不予重視的。
11.eavesdropv.偷聽n.屋檐水。eavesdroppern.偷聽者。
12.entanglementn.纏結;牽連;陷入困境;為難;[pl.](有刺)鐵絲網;障礙物。molecularentanglement分子纏結。
13.teleportationn.遠距離傳遞,遙傳:假定的傳遞方式,通常是指在瞬間讓事物或數據于某點消失再于另一點出現。
14.iontraps離子阱;離子閥。用來防止電子束中的離子擊中其它設備的一種裝置,例如一塊磁鐵。
15.spinofatomicnuclei原子核的自旋。
16.destructiveinterference相消(性)干擾,破壞性干擾。
17.decoherencen.【電】散屑;脫散。
18.“needle-in-a-haystack”problem“大海撈針”問題。
[1]Butascircuitsbecomemoreandmoreminiaturized,computerscomeclosertothefuzzythresholdofquantumphysics:Quantumobjects,suchaselectronsandothersubatomicparticles,canbethoughtofasexistinginmultiplestatessimultaneously:“up”aswellas“down”…“1”aswellas“0.”
但是隨著電路越來越小型化,計算機變得接近量子物理的模糊閾值尺寸:量子物體,如電子和其他亞原子的粒子,可以設想成多種狀態同時存在的情況,上升伴隨著下降,“1”與“0”共存。ImportantSentences
[2]Otherpeoplecansendyoumessagesthatarecodedusingtheproductoftwoprimes,butthatsecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.
其他人可以通過這兩個素數的乘積來編碼發送信息,而只有知道這兩個素數因子的人才能解碼加密的信息。
[3]Twoquantumobjectscanbelinkedtogethersothatifyouobservetheresultofaninteractionwithoneoftheobjects,youcanfigureoutwhatthestateoftheotherobjectisaswell.
兩個量子目標可以鏈接在一起,因此如果你可以觀測到它們中間的一個和它們的交互作用的狀態,你就可以判斷出另一個的狀態。
[4]Theoutputfromaquantumcomputermightwellbeanalogoustoaninterferencepattern,Shorsays:Thecorrectanswerwouldbebuiltupthroughconstructiveinterference,whileincorrectanswerswouldbecanceledoutthroughdestructiveinterference.
量子計算機的輸出有充分的理由可以和干涉圖案類似,Shor說:正確的響應可以從相消干擾中建立,同時不正確的響應也可以從相消干擾中剔除。
[5]Theycouldmakeiteasiertofindsolutionstoother“needle-in-a-haystack”problems—problemsforwhichnobetterapproachisknownthanexhaustivelysearchingalargesetofpossiblesolutionsforthecorrectone.
他們能將其他一些“大海撈針”問題(那些除了從一組可能正確的結論中窮舉搜索而沒有其他一些好方法求解的問題)的求解變得容易些。
(1)Whichkindofcomputingrestsonafoundationofbits,withinformationencodedwithinelectroniccircuitryasaseriesofonesandzeroes?()
A.?Quantumcomputing.
B.?Present-daycomputing.
C.?Parallelcomputing.
D.?Distributedcomputing.QuestionsandAnswers
(2)?Public-keycryptographycan()messagescodedbyusingtheproductoftwoprimes,andthesecretmessagecanbedecipheredonlybysomeonewhoknowsthetwoprimefactors.
A.?send
B.?hide
C.?store
D.?synchronize
(3)?WhichofthefollowingsayingsisNOTTrue?()
A.?Primefactorizationhappenstobethefoundationforsecuredatacommunications.
B.?Itmaybepossibletodevelopa30-qubitcomputerwithinthenextdecade.
C.?Inreality,what’sbeingteleportedisinformationaboutaquantumobject,nottheobjectitself.
D.?Quantuminformationhasatendencyto“leak”intotheoutsideenvironment,inaprocessknownasiontrap.
(4)?Whichofthefollowingsisnotafeatureofquantumcomputing?()
A.?Existinginmultiplestatessimultaneously.
B.?Superposition.
C.?Quantumcryptography.
D.?Binarysystem.
(5)?Whatproblemofquantumcomputershouldbesolved?()
A.?“Needle-in-a-haystack”problems.
B.?Decoherence.
C.?Qubitsnetworksbescaledupinsize.
D.?Allofthem.1.?Whatcouldquantumcomputersbeusedfor?
2.Whatisan“action-at-a-distance”phenomenon?Problems
Althoughpracticalmachineslieyearsinthefuture,aformerlyfancifulideaisgainingplausibility.
ReadingMaterialAQuantumLeapforComputing
ByEricJ.LernerInBrief:
Systemsinwhichinformationobeysthelawsofquantummechanicscouldfarexceedtheperformanceofanyconventionalcomputer.Nowthattheprinciplesofquantumcomputinghavebeendemonstratedinthelab,IBMscientistsaretacklingtheformidabletaskofbuildingmachine.
Nomatterhowfastconventionalcomputersbecome,therewillalwaysbesomecalculationsthataretoolargeforthemtocompleteinreasonabletime.Hopingtocircumventtheselimitations,physicistshavebeguninthepastfewyearstoseriouslyentertainthepossibilitythataradicallydifferenttypeofcomputingcouldsolvecertainkindsofproblemsthataconventionalcomputercouldnotsolveinthelifetimeoftheuniverse.Called“quantumcomputing,”itharnessestheoftennonintuitivequantumpropertiesofindividualatomsandphotonstostoreandprocessinformation.Althoughithadbeenrealizedsincethe1980sthatquantumcomputerscould,intheory,outperformclassicalmachines,quantumcomputingwasuntilfiveyearsagogenerallyconsideredanesotericareaofinterest.Now,thatperceptionischanging,accordingtoNabilAmer,whocoordinatesIBMResearch’squantumcomputingefforts.“Progresshasbeenimpressive,”hesays.“Quantumcircuitshavebeenconstructed,error-correctioncodeshavebeentestedexperimentally,andonekindofextremelyefficientquantumalgorithm—forsearchingdatabases—hasbeenverifiedinaprototypequantumcomputer.”1BeyondClassicalPhysics
Althoughquantumcomputingisbasedonphysicalideaselaboratedinthe1920s,therecognitionthatquantummechanicsmightbeusefulforcomputingonlydawnedonscientistsinthe1980s.Onereasonisthatthecomputersofthe1940sand1950swerebuiltfromvacuumtubesandotherdevicesthatwereclearlyinthemacroscopicrealm,suggestsIBMFellowCharlesBennett,oneofthecreatorsofthebroaderfieldofquantuminformationtheory.Quantumconceptssimplydidn’tappearrelevant.
Nevertheless,asphysicistsbegantoconsiderthephysicallimitsofcomputing,theyweregraduallyledtowardthequantumarena.First,IBMFellowRolfLandauerdiscovered,in1961,thatenergyisuseduponlyduringirreversibleoperations,onesinwhichinformationisdiscarded.Basedonthatwork,Bennettshowedin1973thatfullyreversiblecomputation,whichdidnotconsumeanyenergy,wastheoreticallypossible.Sincequantumcomputationsalsoarereversible,experiencegainedinreversibleprogramminginthe1970sand1980sprovedusefulfordesigningquantumalgorithms.
Thepathtowardquantumcomputingbeganin1980,whenPaulBenioffofArgonneNationalLaboratorypublishedaquantummechanicalmodelforcomputation.Twoyearslater,RichardFeynmanintroducedtheideathatanyphysicalsystemcouldbesimulatedwithaquantumcomputer.ItwasDavidDeutschatOxfordUniversitywho,in1985,firstproducedamathematicaldescriptionofauniversalquantumcomputer—amachinethatcouldbeconstructedoutofquantumelementsandwouldinsomewaysbesuperiortoaconventionalcomputer.Butafloodofinterestinthefielddidnotemergetill10yearslater.2What“Better”Means
Itwasthediscoveryofjusthowmuchmorepowerfulaquantumcomputercouldbethatsetoffthecurrentwaveofactivity.In1994,PeterShorofAT&TLaboratoriesinventedanalgorithmthatcouldtakeadvantageofquantumphenomenatofactorlargenumbersandcouldhencebeused,forinstance,tocracktheRSAPublicKeyCryptosystem,usedbygovernmentsandcorporationsaroundtheworldforsecurecommunication.AnimportantsimplificationofShor’salgorithmwassubsequentlymadebyDonCoppersmithofIBM’sThomasJ.WatsonResearchCenter.
RSAisbasedontheideathatitiseasytomultiplytwolargenumberstogetathird,butverydifficulttofactorthatthirdlargenumbertogetthefirsttwo.Withconventionalcomputers,thedifficultyoffindingthefactorsofanumberisbelievedtoincreaseexponentiallywiththenumberofitsdigits.A250-digitnumber,forexample,takesroughlyamilliontimeslongertofactorthana130-digitnumber.Bymakingthenumberlongenough,onecanensurethatnoconventionalcomputerwillfactorthenumberinanyreasonablelengthoftime.ButShorshowedthataquantumcomputercouldfactornumbersmuchfaster,becausethenumberofstepsitrequiresisproportionaltothesquareofthenumberofdigits.Factoringa250-digitnumberisthereforeonlyfourtimesashardforaquantumcomputerasa130-digitone.3BettingOnSuccess
Shor’sresultsgaveatremendousboosttothenascentfieldofquantumcomputing,andsubsequentlyotherquantumalgorithmswerediscoveredthatalsorevealedaninherentadvantageofquantumcomputingforsolvingcertainkindofproblems.Suchconcepts,however,couldneverbeputtothetestwithoutaworkingquantumcomputer,andneitherShor’snortheotheralgorithmicworkaddressedthequestionofwhethersuchamachinecouldeverbebuilt.Butseveralgroupswerebettingthatitcould.
IBMwashometooneofthese.Intheearly1990s,Amerhadassembledasmall,informal“alternativesforcomputing”groupatWatsontolookatwhatthenextstepsincomputingmightbe.Togetthemembersthinkingasbroadlyaspossible,hechallengedthemwiththequestion,IfGodhadnotmadesilicon,howwouldwebuildcomputers?Afterexaminingvariousideas,Amersays,“wedecidedtofocusonquantumcomputingbecausewethoughtitpromisingandbecausewehadasolidbaseofexpertiseinthefieldofquantuminformation.”4TheWorldofQubits
Whatmakesaquantumcomputersodifferentfrom—andpotentiallysomuchmorepowerfulthan—aconventionalmachineisthepeculiarnatureofquantumbits,orqubits.Aqubitistheinformationunitprocessedbyaquantumcomputer.Physically,itcanberepresentedbyanyquantumsystemthatcanexistintwodifferentstates.Butthankstotheveryunclassicalconceptsof“superposition”and“entanglement”,aqubitisnotlimitedtothevaluesof0or1.
Onechoiceofaqubitmightbeanelectronspinninginamagneticfield.Wheneverthespinismeasured,itisalwaysfoundtobeeitheralignedwiththefield(“spin-up”state)oroppositetothefield(“spin-down”state).Butwhentheelectronisessentiallyisolatedfromtheenvironment—asitmustbeinaquantumcomputer—itbehavesasifitweresimultaneouslyinbothupanddownstates,withadiscreteprobabilityofbeinginthespin-upstateandanotherprobabilityofbeinginthespin-downstate.Thisphenomenonisknownassuperpositionofstates.
Entanglementistheothermainquantummechanicalprincipleuponwhichquantumcomputingrests.Apairofparticles,suchastwoelectronswithupanddownspins,canbeentangled—preparedinsuchawaythatthespinofoneelectronisguaranteedtobetheoppositeoftheother’s.Whatmakesthissostrangeisthat,untiloneoftheparticlesismeasured,neitherhasadefinitespindirection.Yet,assoonasoneismeasuredandfound,say,tobespinup,theotherwillbeknowntobeinthespin-downstate.Aslongasthetwoparticlesremainisolated—nomatterhowfaraparttheymaybe—theywillremainentangled,andmeasuringthestateofonewillimmediatelyprovideknowledgeaboutthestateoftheother.
Whiletheprobabilitiesoftheoutcomeofameasurementcanbecalculatedinadvance,theactualresultcannotbeknownbeforehand.Intuitively,onewouldnotexpectalackofpredictabilitytobeusefulforcomputing,butsuperpositionandentanglementarevaluablebecausetheygeneratearapidlyincreasingnumberofstatesasmorequbitscomeintoplay.So,whilea2-bitclassicalregistercanbeinonlyoneoffourpossiblebinaryconfigurations(00,01,10or11),aquantumregisterconsistingoftwoqubitscanstoreallfournumbersatthesametime,sinceeachqubitrepresentstwovalues.
Addingmorequbitsincreasestheregister’scapacityexponentially.Aquantumcomputercanthenperformlogicoperationson2ninputsinasinglecomputationalstep.Toperformthesametaskwithaclassicalcomputer,2nprocessorswouldhavetoworkinparallel,orelsethecomputationwouldhavetoberepeated2ntimes.Thisisthebasisforwhatisoftenreferredtoasquantumparallelism.5TwobyTwo
Aquantumcomputerisanapparatusinwhichthestatesofthequbitscanbemadetoevolveinadeterministicwayandtherebycarryoutacomputationbyoperatingonthequbitswithquantumlogicgates.Atfirst,itwasthoughtthattoperformthelogicaloperations,atleastthreequbitswouldhavetobemadetointeractinasinglegate,inamannersimilartoaclassicalANDgate,whichbringstogethertwoinputstoproduceanoutput.But,whileitisdifficulttomaketwoelectronsorotherparticlesapproachandwithdrawfromoneanotherprecisely,itisvirtuallyimpossibletodosowiththreeparticlessimultaneously.
SoonafterShor’salgorithmwaspublished,DavidDiVincenzoatWatsonfoundawayaroundthisproblem.Inwhatrepresentsoneofthemostimportantstepstowardapracticalcomputer,DiVincenzodemonstratedthatbringingpairsofparticlestogetherwouldbesufficienttocarryoutanylogicaloperation,evenoneinvolvinghundredsorthousandsofqubits.6QuantumHardware
Althoughtherearemanypossiblesystemsthatwouldserveasqubits,attentionhasfocusedonasmallnumberofpromisingones.AtIBM’sAlmadenResearchCenter,twoprojectsarecurrentlyunderwaytobuildactualquantumcomputers.Oneisbasedonions,theotheronspinningnuclei.“Iontraps”useelectromagneticforcestosuspendindividualions(atomslackingoneormoreelectrons)inanultrahighvacuum,isolatingthemfromtheirenvironmentsothatthesuperpositionoftheirstatescanevolveandinteract.Laserbeamsareusedtoswitchtheion’senergylevelsbetweenthe0and1statesaswellastopermittheionstointeract.Currently,Almaden’sRalphDeVoeisconstructingasimplequantumlogicgatecontainingafewionsinasingletrapthatwillprovideasophisticatedtoolfortestingfundamentaltheoriesofquantumcomputing.
Beginningin1996,IsaacChuang,nowatAlmaden,andNeilGershenfeldofMIT’sMediaLabpioneeredanotherapproach,basedonnuclearmagneticresonance(NMR)technology.Thisphysicalprocess—whichinvolvesorientingandmeasuringthespinsofatomicnucleiinamagneticfield—istheonethatservesasthebasisformedicalmagneticresonanceimaging(MRI)machines.
Nucleimakealmostperfectqubits,aswasfirstpointedoutbyDiVincenzoin1995.Likeelectrons,theycanhavespin-upandspin-downstates,but,inaddition,thesuperpositionsofnuclearspinstatestypicallylastmuchlongerthanthoseofelectronstatesorofmostotherphysicalsystems,thusallowingmoretimeforquantumcomputation.However,suchgoodisolationalsomeansthatlargenumbersofnuclei,about1018,areneededtobeabletocreateanobservablesignal.Sincethesenucleiarenearlyrandomlyorientedatroomtemperature,mostNMRapplicationsneverexplorethequantumbehaviorofnuclei.
ButChuangandGershenfelddevelopedanewmethod,usingtraditionalNMRtools,thatmakestheroom-temperaturenucleibehaveasiftheywereinaverycoldsystem,sothatallthemeasuredspinsappeartobeorientedinthesamedirection.ThispermitsobservationofthequantumbehaviorofnuclearspinsinmoleculesandhenceprovidesabasisforquantumcomputationwithNMR.Thenewmethod,whichuseschloroformmolecules,appliestworadio-frequencypulsesofdifferentdurationstocontrolthespinstates.Apulseofacertainlengthflipsaspinfromuptodown,whereasapulseofhalfthatdurationcreatesasuperpositionstateofupanddown.
Calculationscanbeperformedbecausethespin’sevolutionaftertheflipisinfluencedbythestateofadjacentatomsinthesamemolecule.Iftheadjacentatoms’nuclearspinisup,thenasecondhalfpulse,appliedafteranappropriateevolutiontime,willflipthespinofthefirstnucleusdown.Iftheadjacentnuclearspinisdown,thesamehalfpulsewillresultinanupspin.Thisiswhatcomputerscientiststerman“exclusiveORgate”.
ChuangandGershenfeldusedasequenceofsuchpulsestoimplementaquantumalgorithminventedbyLovGroverofLucentTechnologies’BellLabs.Thealgorithmallowsdatabasestobesearchedfasterthanispossiblewithconventionaltechniques.Forexample,tofindaniteminalistofnentrieswouldtakeaclassicalcomputer,onaverage,n/2tries.Grover'salgorithmonaquantumcomputerreducesthenumberoftriestothesquarerootofn.AlthoughChuangandGershenfeld’simplementationinvolvedonlytwoqubits,itwasthefirsttimeaquantumcalculationofanysizehadbeenperformed.Itprovedthatquantumcomputingcanwork.7MoreQubits
Othergroupsaroundtheworldhaveinitiatedexperimentsinquantumcomputing.Caltech,Stanford,Oxford,LosAlamosNationalLaboratory,theNationalInstituteofStandards,theUniversityofInnsbruckandtheUniversityofCaliforniaatBerkeleyaredevelopingimplementationsaimedathandlingafewqubits.Howeve
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論